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Abstract

In this paper we present our research on defining a correct semantics for a class of update rule (UR) programs,
and discuss implementing these programs in a DBMS environment. Update rules execute by updating relations in a
database which may cause the further execution of rules. A correct semantics must guarantee that the execution of
the rules will terminate and that it will produce a minimal updated database. The class of UR programs is syntacti-
cally identified, based upon a concept that is similar to stratification. We extend the strict definition of stratification
and allow a relaxed criterion for partitioning of the rules in the UR program. This relaxation allows a limited degree
of non-determinism in rule execution. We define an execution semantics based upon a monotonic fixpoint operator
TUR, resulting in a set of fixpoints for UR. The monotonicity of the operator is maintained by explicitly representing
the effect of asserting and retracting tuples in the database. A declarative semantics for the update rule program is
obtained by associating a normal logic program URddd to represent the UR program. We use the stable model seman-
tics which characterize a normal logic program by a set of minimal models which are called stable models. We
show the equivalence between the set of fixpoints for UR and the set of stable models for URddd. We briefly discuss
implementing the fixpoint semantics of the UR program in a DBMS environment. Relations that can be updated by
the rules are updatable relations and they are extended with two flags. An update rule is represented by a database
query, which queries the updatable relations as well as database relations, i.e., those relations which are not updated
by rules. We describe an algorithm to process the queries and compute a fixpoint in the DBMS environment and
obtain a final database.

1 This research is partially sponsored by the National Science Foundation under grant IRI-9008208 and by the Institute of
Advanced Computer Studies.
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1. Introduction

Since the introduction of deductive databases as a research area [Bocc86a, Bocc86b, KoGM87, Mink88,
MUvG86, TsZa86], there has been a corresponding interest in extending the functionality of database management
systems (DBMS) to provide support for rules. Some of this research has been described in [CeWi90, DeEt88,
MaSi88, SeLR88, SeLR93, SiMa88, Wido91, WiFi90]. Whereas rules in deductive database systems have been pri-
marily perceived as supporting retrieval queries against the database, most DBMS research has focused on support-
ing rules whose execution can update the database and trigger the further execution of rules. This paradigm is simi-
lar to the forward-chaining, rule-based production system paradigm in artificial intelligence research [Haye75]. The
motivation for choosing this paradigm is partly because triggers and integrity constraints, which are common in
DBMS, also update the database, and are often implemented in a similar fashion to forward-chaining rules.

The success of research in deductive bases, where Horn logic programs are integrated with function-free
first-order relational databases, can be largely attributed to the fact that there is a strong mathematical foundation for
deductive databases. Horn logic programs have a declarative semantics and an equivalent fixpoint semantics
[vEKo76]. However, the same is not true for database updates and rules whose execution may update the database.
There has been some research in the area of precisely defining the semantics associated with updates. In
[FKUV86], a framework for dealing with the general problem of database updates is presented. Since then, there
has been research in updates in logic programs [MaWa88, NaKr88] where the semantics is defined using a Dynamic
Logic, and there has been research in very powerful procedural languages that are equivalent to Datalog-like exten-
sions with fixpoint semantics [AbSV90, AbVi90, AbVi91, SiMa88]. Most DBMS implementations of production
rules [DeEt88, MaSi88, SeLR93, SiMa88, WiFi90] have an operational or execution semantics defined for them.

In this paper, we are interested in defining a semantics for update rules in a DBMS, where rule execution can
update the database and cause further execution of rules. Our research focuses on supporting update rule programs
(a collection of update rules and an extensional database of facts) in an extended DBMS environment. Although
there has been previous research in the general area of providing a semantics for updates in a logic program or in a
DBMS, and in defining powerful rule languages for updates, as mentioned, this problem has not been studied in the
context of DBMS implementations. Our motivation is to define a class of update rule programs which can be
identified in a fairly straightforward manner by a DBMS designer, and which would be useful in DBMS applications
such as to capture triggering information, to maintain integrity constraints, or to make simple inferences from the
information in the database. An important criterion in defining this class of update rule programs is that its seman-
tics must be easily, and correctly, implemented in a relational DBMS with some extensions.

There are two problems that must be resolved in providing a correct execution semantics for update rules in a
DBMS. One problem is to deal with non-terminating execution of update rule programs where rules insert and/or
delete the same tuples indefinitely. The second problem arises when there are negative literals in the rules. With
different execution schedules that execute rules in different sequences, a database produced by some schedule may
not be minimal. Informally, this means a database produced by one schedule may be a subset of a database pro-
duced by another schedule. This occurs because negative literals that are evaluated by the rules may be affected by
subsequent insertions and/or deletions of tuples, by other rules.

To deal with the first problem of non-terminating programs, we define a fixpoint semantics for update rule
programs based on a monotonic fixpoint operator. The monotonicity of the fixpoint operator is achieved by expli-
citly recording the effects of inserts and deletes of tuples in the database. The retraction of a tuple (by a rule) is not
affected by subsequent assertions of the same tuple (by other rules), and this ensures the termination of the execu-
tion. The second problem of how to deal with negative literals has been researched within the context of logic pro-
grams. Stratification [ApBW88] is a technique used to identify a special class of logic programs where the rules
have negative literals. Stratification imposes an ordering between the rules and such an ordering supports a correct
interpretation of the negative literals in the rules. In previous research [Rasc90, Rasc94], we defined a strict
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stratification criterion for the update rules. However, stratification is an overly strict criterion, and there are many
update rule programs which, while not stratified, capture some very useful properties in a DBMS [RaLo94]. A
further restriction of stratification is that the execution of the program must be deterministic, i.e., it must produce a
single answer. However, there are many programs that are naturally non-deterministic. For example, when the
database does not satisfy a given integrity constraint, then there may be several update rules which could be applied
to restore consistency. These rules could be non-deterministically chosen, depending on the application, and could
result in different answers.

In this paper, we relax the strict definition of stratification for update rules, which was first introduced in
[Rasc90, Rasc94]. We present a more flexible definition for partitioning the update rule program UR into a set of

partitions, UR1 ∪ .
.... ∪ .

URn. Each partition may include cliques of rules which do not satisfy the criterion for strict

stratification. As with strictly stratified programs, there is an implicit ordering among the update rules from one par-
tition to the next. We define a fixpoint semantics for the UR program based upon a fixpoint operator TUR. Rules in
partition URi must be executed and a fixpoint obtained before executing rules in the partition URi+1. Since rules are
non-deterministically selected for execution, there are several possible fixpoints. Each fixpoint for the UR program
corresponds to a final database. The monotonicity of the fixpoint operator, the condition that once a tuple is
retracted it is not affected by subsequent assertions (of the same tuple) and the stratification criterion results in an
execution which is guaranteed to terminate and the execution will also produce a minimal database.

To provide a precise definition for the final (minimal) database(s), we associate a normal logic program URddd
with each UR program. The translation to obtain this program URddd, from UR, interprets rules which update the data-
base by retracting tuples as integrity constraints. This is different from other approaches, where retractions in the
heads of rules are treated as negative literals in the heads of the rules. We believe our interpretation is more natural
for DBMS applications, and we discuss this in the section on related research. We use the stable model semantics
for normal logic programs [GeLi88] which characterizes a normal logic program with a set of minimal models
called stable models. A stable model for the program URddd must be identical to a final database obtained when a
fixpoint is reached from executing the rules of UR, and vice versa. The translation to obtain URddd and the declarative
semantics for UR, based on stable models is described in detail in this paper.

Implementing the UR program in a DBMS is straightforward and computing the fixpoint for the rules is simi-
lar to query processing in a DBMS. Each predicate in the UR program corresponds to a relation. The updatable
relations that are updated by the rules are extended with two additional attributes. This extension allows us to expli-
citly store information on tuples which are inserted or deleted by the rules. The rules themselves are translated into
queries which retrieve tuples from the updatable relations and the database relations (which are not updated by the
rules). Queries corresponding to the rules in each partition are executed, in turn, until the queries in the partition can
no longer update the updatable relations. We note that the complexity of query evaluation is not affected due to the
additional attributes used with the updatable relations. The simplicity of the implementation motivates the choice of
this criterion for relaxing the strict stratification when defining the acceptable update rule programs.

This paper is organized as follows: In section 2, we identify the syntax of the UR programs and provide some
example programs to illustrate the problems that arise during execution of UR programs. In section 3, we introduce
the concept of stratification and define UR programs which are strictly stratified. We then describe two simple
extensions to the stratification conditions. Each extension introduces cliques of rules (which fail the strict
stratification criterion) into each partition, and provides a more flexible criterion for partitioning the rules of the UR
program. The usefulness of these extensions is motivated with example UR programs. In section 4, we define the
fixpoint semantics for the UR programs defined in section 3. In section 5, we provide a translation to obtain a nor-
mal logic program URddd, and we present the equivalent declarative semantics based on the stable model semantics for
URddd. In section 6, we provide a proof that the fixpoint semantics for UR is sound and complete wrt the declarative
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semantics for URddd. In section 7, we discuss related research on providing a semantics for updates, and we compare
these approaches with our research on semantics of UR programs. In section 8, we outline a method for implement-
ing the fixpoint semantics of the UR programs (described in section 4) in a relational DBMS. Finally, in section 9,
we summarize our research and we discuss future research. Appendix 1 provides a translation from an update rule
program to a normal logic program in the first order case.

2. A Syntax for Update Rule Programs

In this section we introduce the syntax for specifying update rules. We borrow concepts from the OPS5 pro-
duction system language [Forg81 and Forg82], as well as the Datalog language with procedural extensions
[AbVi90, AbVi91].

2.1. Syntax for Update Rules

An update rule consists of (1) the name (2) the antecedent on the left hand side (LHS), also referred to as the
body of the rule, (3) the symbol →, and (4) the consequent actions, on the right hand side (RHS), also known as
the head of the rule.

The antecedent is a conjunction of first order positive literals of the form P( ud ) or negative literals of the form
¬ Q( vd ) or evaluable predicates [Ullm89] of the form: eval(op, arg1, arg2). The consequent actions are of the form
assert R( ud ) or retract S( vd ) , where the assert and retract are special constants reserved for the assert and retract
operations (to be explained later) and R and S are predicates. Let P, Q, R, S, etc., be predicates which are
represented by relations in the DBMS. The relations corresponding to predicates that occur in the actions in the
heads of the update rules are updatable relations, e.g., R or S. Relations that correspond to predicates that only
occur in the body of update rules, but not in the heads of rules are database relations. They are not updated by the
update rules but they can be updated by explicit insertions and deletions, just as the updatable relations. Literals in
the body of a rule can refer to either database or updatable relations. ud and vd are vectors of terms from a non-empty
finite or infinite set of constants C, and from a set of variables X. An evaluable predicate eval is a binary built-in
predicate supported by many database systems [Ullm85]; op is one of the binary comparison operators such as {<, ≤
, >, ≥ , =, ≠ } and arg1 and arg2 are either variables or constants from the set C . We assume that there exists a total
order in the elements of C 1.

We assume that all variables are range-restricted [Demo82, Nico82, NiDe83], i.e., any variable that occurs in
a literal, or in the evaluable predicate eval, must appear in a positive literal in the body of a rule. This restriction
correspond to the safety of evaluating queries 1. It ensures that only ground atoms are inserted into the updatable
relations through the execution of the actions of the update rules. The syntax restricts the literal referred to by the
retract action, to occur positively in the antecedent of that rule, so that only ground atoms (tuples) that are actually
in the database, (in the updatable relations) are retracted through the execution of the update rules.

A function-free update rule program UR, consists of the following 2:

1 Note that the set of constants usually corresponds to a collection of sets of different types, e.g., integer, string, etc. To simplify
the discussion, we assume all the constants to be of the same type.
1 Note that the variables are not also instantiated to safely computable values corresponding to either arithmetic functions or ag-
gregate functions, as is common in a DBMS. It is straightforward to modify the syntax for the rules to include such safely com-
putable functions, corresponding to the variables occurring in a predicate.
2 Note that an action in the head of a rule which updates the value(s) of one (or more) variable(s) of a literal (i.e., attributes of a
corresponding tuple), can be interpreted as a pair of corresponding assert and retract actions. Such an update rule can be rewrit-
ten as a pair of appropriate a-update and r-update rules, relevant to this literal.
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(i) A set of update rules, each of which has a single 3 assert action in its head. These are a-update rules and they
assert the literal occurring in the head of the rule, or they insert tuples into the corresponding updatable rela-
tion.

(ii) A set of update rules, each of which has a single 3 retract action in its consequent. These are r-update rules
and they retract the literal which occurs in the head of the rule, or they retract tuples from the corresponding
updatable relation.

(iii) An initial extensional database of ground atoms EDBinit.

We informally describe the execution of an update rule program. The antecedent of each rule is interpreted as
a query against the relations, as follows: (1) For each of the positive literals, P( ud ), relation P is queried, and a set of
instantiated tuples of P satisfying each positive literal in the antecedent is retrieved. (2) For each of the negative
literals, ¬ Q( vd ), the query is verified against the corresponding relation Q. Each variable x in vd is range restricted
to the value obtained by evaluating a query for some positive literal P in which x occurs. (3) Finally, for each
occurrence of the evaluable predicate, eval, it is evaluated by the DBMS to return a value which is either true or
false. Since the variables in the eval predicate are range-restricted they can be evaluated safely; this is discussed
later. The antecedent of an update rule is satisfied if the relations contain instantiated tuples corresponding to each
of the positive literals, if the relations do not contain tuples corresponding to the negative literals, and if all
occurrences of the eval predicate in the body of the rule evaluate to true. Rules whose antecedents are satisfied are
(non-deterministically) selected for execution and they update the database. Depending on the action in the head of
the selected rule, the updatable relations are updated. Either new facts are asserted by the a-update rules or existing
facts are retracted by the r-update rules. This process continues until the updatable relations can no longer be
updated.

2.2. Problems in Executing Example Update Rule Programs

There are several problems that may arise when executing a set of update rules in a DBMS. If we interpret
the assert and retract actions in a straightforward manner by inserting and deleting database tuples from the
corresponding relations, then there is a possibility that the execution of the program may not terminate and the rela-
tions may be updated indefinitely. The second problem is that when there is more than one execution schedule, the
execution may not produce a minimal database. We present some motivating example programs that highlight these
problems.

Example 1

Consider the update rule program with relations Employee, GoodWorker, Manager and Unfriendly, where the initial
database has the tuples, {Employee(Mike). GoodWorker(Mike).}, and with the following set of update rules:
r 1: Employee(X), GoodWorker(X) → assert Manager(X)
r 2: Employee(X), ¬ HasOffice(X) → assert Unfriendly(X)
r 3: Manager(X), Unfriendly(X) → retract Manager(X)

The first rule promotes employees who are good workers to managers, while the second rule asserts the fact
that employees who do not have offices become unfriendly. Finally the third rule rescinds the promotion of
managers who are unfriendly. Given this initial database and set of rules, the rules will execute until a fixpoint is
reached and the database can no longer be updated. Rules r 1, and r 2 will execute (in any order) and the tuples

3 An update rule program in which a rule can have multiple actions in the head can be replaced with an equivalent update rule
program where each rule has a single action in the head. This may require the introduction of special predicates, in the new pro-
gram, which are previously unused in the original program.
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Manager(Mike) and Unfriendly(Mike) will be added to the database. Next, the rule r 3 executes and the tuple
Manager(Mike) will be deleted from the the database. Subsequently, r 1 and r 3 will execute, first inserting the tuple
Manager(Mike) and then deleting this tuple. Processing of these two rules could continue indefinitely, alternately
inserting and deleting the tuple Manager(Mike) from the Manager relation, and the UR program may not be able to
terminate.

Example 2

This is an example where the update rules produce different databases, due to differences in selecting and
executing the rules.

The initial database = {Employee(Mike). GoodWorker(Mike)} and the update rules are as follows:
r 1: Employee(X), GoodWorker(X) → assert Manager(X)
r 2: Employee(X), Manager(X) → assert IncreasePay(X)
r 3: Employee(X), ¬ Manager(X) → assert DecreasePay(X)

The first rule promotes employees who are good workers to managers. The second rule increases the salary
of managers, while the third rule decreases the salary of employees who are not managers. The problem here is that
depending on the order in which the rules are selected for execution, there will be two different answers obtained.
For example, if the update rules are executed in the sequence r 1 followed by r 2, then Mike will be promoted to a
manager and his salary will be increased. However, if the execution sequence was r 3 followed by r 1 and r 2, then,
first, Mike’s salary will be decreased, following which Mike will be promoted to a manager, and his salary will be
increased. It is in this sense that we say that the second execution is not minimal or does not produce a minimal
database compared to the first execution. Informally, the database resulting from the asserts and retracts of the exe-
cuted rules, produced by one execution schedule, includes all the answers corresponding to a different execution.
The formal definition of a minimal database will be introduced in section 6. We will define the equivalent declara-
tive stable model semantics, and the corresponding (minimal) stable models which correspond to the minimal data-
bases.

Example 2 also points out the difference between a deterministic and a non-deterministic execution. Suppose
we were to consider a deterministic rule execution strategy that allowed all the rules to execute simultaneously.
Then, the rules r 1 and r 3 would execute and Mike would be promoted to a manager and his salary would be
decreased simultaneously. Then rule r 2 would execute and his salary would be increased. Such an execution is
deterministic in that there can be only one final answer.

Another variation results when we consider the execution of a single rule. Consider the following rule:
r : ManagerOf(P, X), ManagerOf(P, Y), Employee(P) → retract ManagerOf(P,X)

Suppose Mary is an employee with two managers Jane and Martha. Then, the set of tuples {ManagerOf(Mary,
Jane), ManagerOf(Mary, Martha)} will satisfy the literals ManagerOf(P,X) and ManagerOf(P,Y). A deterministic
execution will then delete both the tuples of ManagerOf leaving Mary without a manager! However, a non-
deterministic execution will only delete one of those tuples. These issues relating to deterministic or non-
deterministic execution and tuple-oriented or set-oriented execution have been studied in different contexts.
Researchers who study theoretical issues have reported on such executions in [AbVi90, AbVi91] and it has also
been studied from an implementation viewpoint since the set-oriented execution can provide more efficient execu-
tion [PaGo91, WiFi91]. We will discuss this issue in a later section where we compare our research with other
research.

3. Identifying Acceptable Update Rule Programs

In the previous section, we saw examples of update rule programs whose execution did not terminate, or did
not produce minimal databases. To avoid this problem, we require a method to syntactically identify legal update
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rule programs and define a semantics for these programs that disallows this behavior. One reason for the undesir-
able behavior of programs is that negative literals in the body of update rules must be correctly interpreted, as the
tuples are asserted or retracted. Informally, an error occurs if a literal occurring negatively in a rule is interpreted to
be false, while there is another rule which can assert a tuple which can prove this literal. Similarly, an error may
occur if a literal occurring negatively in the body of a rule is interpreted to be true, while there may be another rule
which can retract some tuple so that after the retraction, the literal is no longer true. In order to solve this problem,
we apply the concept of stratification to partition the rules of a update rule program. The order imposed by this par-
titioning of the rules will order the sequence of execution of the update rules. As a result, the literals will be inter-
preted correctly, as defined by the corresponding fixpoint semantics for the update rule program.

Stratified logic programs are an extension of Horn programs to more general logic programs to allow negative
literals in the antecedent of a rule. Since we apply the concept of stratification in our research, we informally define
it in this section, as it applies to a stratified logic program [ApBW88]. We refer the reader to [ApBW88] for a dis-
cussion on stratified logic programs.

A logic program P consists of a finite set of rules of the following form:

A ← L1, L2, ..., Lm

where A is an atom and each of the Li are literals. If m=0, then A is a fact.

A logic program P is stratified if there exists a partition P = P1 ∪
.

. . . ∪
.

Pn where ∪
.

is a disjunctive union,

such that the following conditions hold for i = 1, 2,...,n:

(1) for each predicate symbol, corresponding to a literal occurring positively in the body of a rule in Pi, its

definition is contained within
j ≤ i
∪ Pj. The definition (of a predicate symbol) is all rules in which the predicate

symbol corresponds to the literal occurring positively in the head of the rule.

(2) for each predicate symbol, corresponding to a literal occurring negatively in the body of a rule in Pi, then its

definition is contained within
j < i
∪ Pj.

P1 may not contain any rules of P. We say that P is stratified by P1 ∪
.

. . . ∪
.

Pn and each Pi is called a stratum of P.

3.1. A Stratified UR program

Definitions

An update rule is an a-update rule if it has a single assert action in its head.

An update rule is an r-update rule if it has a single retract action in its head.

A rule is relevant to a predicate Q if the literal Q occurs in the head of the rule.

A rule p has a positive/negative dependency on the predicate Q when Q occurs in a positive or negative literal
in the body of the rule. The predicate Q is a distinguished predicate in the rule.

A predicate P is retractable if there is an r-update rule relevant to that predicate, otherwise the predicate is
unretractable. `

A stratified update rule program UR, is a function-free stratified program and comprises the following:

(1) a set of a-update rules, as follows:
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r1: A1, ..., Aa, ¬B1, ..., ¬Bb → assert P

(2) a set of r-update rules, as follows:

r2: P, C1, ..., Cc, ¬D1, ..., ¬Dd → retract P

(3) an initial database of facts (EDBinit).

Note that we have not considered the evaluable predicates in the body of the rules. This is because the pres-
ence of the evaluable predicates does not affect the stratification criterion for the program.

There must exist a partition so that UR is a stratified program. Thus, UR = UR0 ∪
.

UR2 . . . ∪
.

URn. Each of

the partitions URi comprises a set of a-update rules and a set of r-update rules; the sets of a-update rules or r-update
rules in each partition may be empty. Partition UR0 corresponds to the initial database EDBinit and there are no rules
in UR0. The following conditions must hold for the stratification of the UR program:

(1) UR = UR0 ∪ .
UR1 ∪

.
. . . ∪

.
URn

(2) For every distinguished predicate, occurring in a positive literal Ak or Ck, in a rule such as r1 or r2 in URi, all
relevant a-update rules (in which the predicate occurs in the assert action, in the head), must be contained

within
j ≤ i
∪ URj.

(3) For every distinguished predicate, occurring in a positive literal Ak or Ck, in a rule in URi, all relevant r-

update rules (where the predicate occurs in the retract action) must be contained within
j < i
∪ URj.

(4) For every distinguished predicate, occurring in a negative literal Ck or Dk, in a rule in URi, all relevant a-

update rules must be contained within
j < i
∪ URj.

(5) For every distinguished predicate, occurring in a negative literal Ck or Dk, in a rule in URi, all relevant r-

update rules must be contained within
j < i
∪ URj.

(6) Finally, for the distinguished predicate occurring in a positive literal P, in an r-update rule such as r2, which

has retract P in its head, in URi, all relevant rules with P in the head must be contained within
j ≤ i
∪ URj. `

Note that condition 6, together with the syntactic restriction that the distinguished predicate P must occur in a
positive literal in an r-update rule such as r2 that has (retract P) in its head, will place all r-update rules with
(retract P) in their heads in the same partition. In addition, it will not admit r-update rules with retract P in
the head, and where some other distinguished predicate Ak or Bk is also P.

Based on this stratification condition, we note that in Example 2, the update rule r3 will be placed in a higher
partition w.r.t. the other two rules. The impact of this partitioning on the execution of the rules is to ensure that a
minimal database is obtained. The proof of obtaining a minimal database for the strictly-stratified programs is in a
paper on related research [Rasc94].

3.2. Relaxing the Conditions for Stratification

Enforcing that a UR program is stratified is a very strict condition which eliminates many useful programs.
When integrity constraints are maintained by r-update rules, or when a-update rules deduce new information, these
rules query the database and make conditional updates. The queries and conditional updates made by two or more
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rules may violate the strict stratification criterion previously described. It would therefore be advantageous to relax
the stratification criteria so as to accept more UR programs. However, the relaxed criterion must still ensure that the
execution of programs terminates and produces minimal databases. If we consider the problem of combining multi-
ple knowledge bases, and answering queries and maintaining a combined knowledge base, then it becomes very
important that the strict stratification criterion be relaxed. We motivate the relaxations by presenting example UR
programs not meeting the strict stratification criteria. Nonetheless, they are useful programs. We also note that the
strictly-stratified programs are deterministic and compute a single answer; this can be a drawback in many instances.

3.2.1. First Relaxation

We first relax the stratification conditions to allow r-update rules that are relevant to some set of predicates to
co-exist in the same partition when they all have a mutual positive dependency on all the predicates in that set. This
exception allows us to include rules which are illegal under the initial strict definition of stratification. Consider a
database with relations corresponding to the relations person, male and female. A person can be either a male or a
female, but not both. This is a constraint that we want to be enforced. The following pair of r-update rules maintain
this constraint.

Example 3

r1: person(x), male(x), female(x), choice(x, "m") → retract female(x)

r2: person(x), male(x), female(x), choice(x, "f") → retract male(x)

In the event that the database is updated so that it violates this constraint, then, either the fact that a person is a
male or that she is a female must be retracted from the database, i.e., the corresponding tuple must be retracted.
Since this is not an arbitrary decision which could update the database in a non-deterministic manner, in this exam-
ple, we introduce an additional predicate choice. This predicate is used to prompt the user to select whether the per-
son is a male or a female. Depending upon the value of (the second attribute of) choice, either the tuple satisfying
female(x) or male(x), for some bound value of variable x, will be retracted from the corresponding relation.

If we apply the strict definition of stratification to these rules, condition (3) of this definition in section 3.1
requires that rule r1 be in a lower partition than rule r2 and that r2 be in a lower partition than r1. Obviously, these
two requirements cannot be simultaneously satisfied, and the program would be rejected.

This situation is characterized by two or more rules querying the same subset of predicates in the body of the
rule(s), or querying some mutually overlapping subsets of some set of predicates. The update actions of the rules
are different, and the rules are designed so that usually all the rules are not expected to be executed. Typically, this
situation occurs when an integrity constraint is being verified against the database. When the database violates the
constraint, there may be many different ways to restore consistency, corresponding to each rule. One of the ways is
chosen, either selected by the user as in this example, or more non-deterministically, when a particular rule is
selected by the system. Thus, these rules will check the same conditions in the body of the rules, while the actions
in the head of each rule will be different. As a result, the rules will fail the strict-stratification criterion.

Example 4

Consider another example where the rules do not satisfy the strict stratification criterion but are still useful. In
this example, two different answers can be non-deterministically obtained by executing the rules. The database has
relations corresponding to the predicates manager, goodworker and unfriendly, and the rules are as follows:

r 1: manager(x), unfriendly(x) → retract manager(x)
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r 2: manager(x), unfriendly(x), goodworker(x) → retract unfriendly(x)

r 3: unfriendly(x), goodworker(x) → retract goodworker(x)

Consider Joan who is a good worker and a manager, but is unfriendly. We can either execute rules r1 and r3

which maintain the constraints that an unfriendly person should not be a manager, and that an unfriendly person is
not a good worker, respectively. The final database is Joan is an unfriendly person. Alternately, we can execute
rule r2 which maintains the constraint that a person who is a manager and also a good worker is not an unfriendly
person. The final database is that Joan is a good worker and a manager.

In these cases, instead of rejecting the program, our solution is to relax the strict stratification criteria, so that
these programs are accepted. The relaxation to accept rules such as those in Examples 3 and 4 applies to condition
(3) of the stratification criterion. We first identify a clique of r-update rules that are relevant to a set of predicates,
say {P1, ..., Pn}. These r-update rules in the clique may co-exist in the same partition when they each have mutual
positive dependencies on these same distinguished predicates, P1, ..., Pn.

Definition
A set of r-update rules participate in an r-clique if there is some maximal set of predicates {P1, ..., Pn} such
that each rule in the r-clique is relevant to some predicate from this set; if there is at least one rule in the r-
clique which is relevant to each predicate in this set; and if all of the predicates in the set are distinguished and
occur in a positive literal in each rule of this r-clique. All predicates in this maximal set are retractable in this
r-clique. `

The following r-update rules form an r-clique with a maximal set of predicates {P1, ..., Pp}, where each Pi is a
distinguished predicate in each r-update rule in the r-clique:

r1: P1(u1,1ddd), P2(u1,2ddd), ..., Pp(u1,pddd), A1,1, ..., A1,a1, ¬B1,1, ..., ¬B1,b1 → retract P1(u1,1ddd)

r2: P1(u2,1ddd), P2(u2,2ddd), ..., Pp(u2,pddd), A2,1, ..., A2,a2, ¬B2,1, ..., ¬B2,b2 → retract P2(u2,2ddd)

:

rp: P1(up,1ddd), P2(up,2ddd), ..., Pp(up,pddd), Ap,1, ..., Ap,ap, ¬Bp,1, ..., ¬Bp,bp → retract Pp(up,pddd)

Each ui,jdd is a vector of terms (variables and constants), and for each clique, all terms u1,iddd ... up,iddd, associated with each
predicate Pi in the maximal set must be unifiable.

We relax the original condition (3) of the strict-stratification criterion which was as follows:

(3) For every distinguished predicate occurring in a positive literal in a rule in UR i, all r-update rules relevant to

this predicate must be contained within
j < i
∪ URj.

We relax this condition to allow rules such as in the previous example to be legal update rule programs. Con-
dition 3 is modified as follows:

(3* ) For every distinguished predicate occurring in a positive literal in an r-update rule p, in UR i, any relevant r-

update rule q must be contained within
j < i
∪ URj

unless the rules p and q participate in an r-clique in the partition URi. Then p and q may be contained within
the same partition URi.

Definition
2 (or more) r-cliques overlap if the predicates in the set of the maximal set of predicates of each clique is not
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disjoint and the corresponding vectors of terms are unifiable. `

3.3. Second Relaxation

A similar situation may occur with rules that are used to infer new information. The body of each rule queries
some subset of predicates. If the rules (which infer different information), query the same subset of predicates or
some mutually overlapping subsets, then it is possible that the stratification conditions will be violated. Sometimes,
if one rule executes and asserts some new information, then this prevents the execution of another rule. The relaxa-
tion applies to a-update rules. They are allowed to co-exist in the same partition when they have a negative depen-
dency on each predicate in some set.

For this example, we consider the same relations as in Example 3. The rules are based on the knowledge that
each person must be either a male or a female. This knowledge is again subject to the constraint that a person can-
not be a male and a female simultaneously. As before, the choice predicate is used to select whether the person
should be a male or a female. Rule r1 asserts the fact that the person is a female, but it first queries the database to
make sure the person is not a male as well. Similarly, rule r2 asserts that a person is a male, after having first
verified that this person is not a female as well. The rules are as follows:

Example 5

r1: person(x) ¬ male(x), choice(x, "f") → assert female(x)

r2: person(x) ¬ female(x), choice(x, "m") → assert male(x)

Again, if we apply the strict stratification criterion, condition (4) requires that r1 be in a lower partition than r2

and vice versa. Our solution is to relax the criteria for stratification.

Definition
A set of a-update rules participate in an a-clique if there is some maximal set of predicates {P1, ..., Pn} such
that each rule in the a-clique is relevant to some predicate from this set; if there is at least one rule in the a-
clique which is relevant to each predicate in this set; and if all of the predicates in the set (except the predicate
in the head of each rule) are distinguished and occur in a negative literal in each rule of this a-clique. `

The following a-update rules form an a-clique with a maximal set of predicates {P1, ..., Pp}, where each Pi is a
distinguished predicate in each a-update rule in the a-clique, except in the rule relevant to Pi:

r1: ¬P2(u1,2ddd), ¬P3(u1,3ddd), ..., ¬Pp(u1,pddd), A1,1, ..., A1,a1, ¬B1,1, ..., ¬B1,b1 → assert P1(u1,1ddd)

r2: ¬P1(u2,1ddd), ¬P3(u2,3ddd), ..., ¬Pp(u2,pddd), A2,1, ..., A2,a2, ¬B2,1, ..., ¬B2,b2 → assert P2(u2,2ddd)

:

rp: ¬P1(up,1ddd), ¬P2(up,2ddd), ..., ¬Pp−1(up,p−1ddddd), Ap,1, ..., Ap,ap, ¬Bp,1, ..., ¬Bp,bp → assert Pp(up,pddd)

As before, we must ensure that the execution of the rule terminates and produces a minimal database. We
relax condition (4) of the stratification criterion, which was stated as follows:

(4) For every distinguished predicate occurring in a negative literal in a rule in UR i, all a-update rules relevant to

this distinguished predicate must be contained within
j < i
∪ URj.

We modify this condition, as follows:

(4* ) For every distinguished predicate occurring in a negative literal in an a-update rule p, in UR i, any relevant a-

update rule q must be contained within
j < i
∪ URj
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unless the rules p and q are a-update rules that participate in an a-clique in the partition URi. Then, p and q
may be contained within the same partition URi.

Definition
2 (or more) a-cliques overlap if the predicates in the set of the maximal set of predicates of each clique is not
disjoint and the corresponding vectors of terms are unifiable. `

We note from the definition for relaxing the stratification conditions that the same predicate may not occur in
the maximal set of both an a-clique and an r-clique. However, the definition will allow programs with overlapping
cliques. Thus, a predicate may occur in the maximal sets of several a-cliques, or of several r-cliques, simultane-
ously. The relaxed criterion admits many programs which would have been rejected by the strict stratification cri-
terion.

4. A Fixpoint Semantics for Update Rule Programs

We define a fixpoint semantics for acceptable update rule programs which guarantees that the execution of the
program terminates and each execution schedule produces a minimal database. Non-terminating behavior results
when rules can indefinitely keep asserting and retracting the same tuples. A solution is to explicitly keep track of
tuples which are asserted and retracted. Once a tuple is retracted it is not affected by further assertions (of the same
tuple), so so that this process cannot occur indefinitely. The execution of update rules is defined based on a mono-
tonic operator TUR. A fixpoint is non-deterministically obtained for the update rule program UR. The monotonic
operator TUR is non-deterministically applied to all the rules in each partition, URi, in the order i= 1, 2, ..., n. A
fixpoint EDBi is computed for each partition. Each EDBi is represented by the corresponding relations, after the
execution of all the rules in the partition that can be executed. Thus, a sequence of fixpoints EDB1, EDB2,...,.,
corresponding to each partition UR1, UR2, . . . , , are computed, in turn. The final updated database is EDBn and will
contain all the answers obtained from the update rule program.

Consider a domain, DUR, for an update rule program to be the set of all possible ground atoms, i.e., atoms with
no variables, of the form assertP(td) and retractP(td), where P is any predicate and td is a vector of constants from the
ordered set C .

Definition
EDB0 = {assertP(td) | P(td) ∈ EDBinit}. `

EDB0 is a set of tuples in the relations assertP, assertQ, etc., corresponding to the facts of the initial database
EDBinit and the relations retractP, retractQ, etc. will initially be empty, since the database only contains facts, ini-
tially.

Definition
Given a subset S of DUR, we have the following:

g S entails P( td ) if assertP( td ) ∈ S and retractP( td ) ∈/ S.

g S entails ¬ P( td ) if and only if S does not entail P( td ). This occurs with the following:

assertP( td ) ∈ S and retractP( td ) ∈ S or

assertP( td ) ∈/ S and retractP( td ) ∈/ S.

g The following cannot occur in S: assertP( td ) ∈/ S and retractP( td ) ∈ S; this is due to the syntactic restriction
on the language. `

Definition
Given the ordered set of constants C over which DUR is defined, we have eval(opi, argi,1, argi,2) is true if



www.manaraa.com

12

(1) opi is in the set { ≤ , <, ≥ , >, =, ≠ }; and

(2) each of the arguments argi,1 and argi,2 are constants in the set C , or they are range restricted variables occur-
ring in a positive literal, i.e., they can be instantiated to constants in the set C ; and

(3) (argi,1 op argi,2) when interpreted in the usual fashion evaluates to true.

Otherwise, eval(opi, argi,1, argi,2) evaluates to false. `

We define an operator TUR which, when applied to a rule in a partition of the update rule program, will update
the EDB relations. Since TUR is applied non-deterministically, we first define an intermediate operator MUR.

Definition

Let MUR : 2DUR→2DUR be a mapping from subsets of DUR to subsets of DUR, defined as follows, where S is a
subset of DUR:

MUR(S )= {assertP(td) | there is a ground instance of a rule p (i.e., an instance of p where all the variables are
substituted by constants from C ):

A1,A2, ...,An,¬B1,¬B2, ...,¬Bm, eval(op1, arg1,1, arg1,2), eval(op2, arg2,1, arg2,2), ..., eval(opk, argk,1, argk,2),

→ assertP(td)

of an update rule such that S entails B1, B2, ..., Bn, ¬ C1, ¬ C2, ..., ¬ Cm ,

and each eval(opi, argi,1, argi,2) evaluates to true }.

∪
{ retractP(td) | there is a ground instance p:

A1, A2, ..., An, ¬ B1, ¬ B2, ..., ¬ Bm , eval(op1, arg1,1, arg1,2), eval(op2, arg2,1, arg2,2), ..., eval(opk, argk,1, argk,2),

→ retractP(td)

of an update rule such that S entails B1, B2, ..., Bn, ¬ C1, ¬ C2, ..., ¬ Cm ,

and each eval(opi, argi,1, argi,2) evaluates to true }. `

Definition

Let TUR:2DUR→2DUR be a mapping from a subset of DUR to a subset of DUR defined as follows:

TUR(S ) = S ∪ {Q} where Q ∈ MUR(S ) and Q ∈/ S. `

Note that Q is selected non-deterministically.

4.1. Computing the Operational Fixpoint

Each EDBi is computed iteratively, applying the operator TUR to the rules in each partition URi until a fixpoint
EDBi is reached. TUR will select a single rule for execution in each step and this will result in a possibly non-
deterministic execution. Since TUR is monotonic, a fixpoint is obtained for each partition, URi, when there are no
longer any rule that can change EDBi. Processing for the update rule program terminates when the fixpoint for rules
in URn is reached and EDBn is computed.

EDB1 = TUR1
↑ ω (EDB0)

EDB2 = TUR2
↑ ω (EDB1)

:
EDBn = TURn

↑ ω (EDBn−1)
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Theorem
EDBi = TURi

↑ ω (EDBi−1) is a fixpoint of TURi
, for i=1,2,..,n. EDBn is a fixpoint for TUR.

We observe from the definition of the operator TUR that it is growing monotonically, i.e., S ⊆ TUR(S) and that
TUR ↑n (S) ⊆ TUR ( TUR ↑n (S) ). Since the domain DUR for the update rule program is finite, after some finite
number of applications n, n < ω, the operator will not add any new element of the form (assert P(td)) or (retract
P(td)) to EDBi.

Thus, EDBi = TURi
↑ ω (EDBi−1) is a fixpoint of TURi

for 1 = 1, 2, ..., n. `

We note that there may be several ways to partition a program, and to identify overlapping cliques (within the
same partition). However, this does not have an effect on computing the fixpoint.

4.2. Some Relevant Properties of the Update Rule Programs

We present some relevant properties of the update rule programs, UR. These properties, represented by the
following lemmas, 4.1 through 4.6, follow from the criterion for strict stratification or the relaxed criterion presented
in Section 3. The proofs are straightforward and are omitted for readability. The results will be applied to the proof
of the equivalence between the fixpoint semantics for UR programs and the declarative semantics, which is dis-
cussed in the next few sections. The following properties (expressed in the propositional case) hold true for the UR
programs:

Lemma 4.1
Let UR = UR1 ∪ . . . ∪ URn be a UR program. Let UR− = UR1

− ∪ . . . ∪ URn
− be the resulting program

after eliminating all the a-update rules in UR which participate in each a-clique and all the r-update rules
which participate in each r-clique, in all the partitions of UR. Then, UR− is a strictly-stratified UR program.`

Lemma 4.2
Let UR be an update rule program. Then the set of all atoms that occur in any maximal set associated with
any a-clique and the set of all atoms that occur in any maximal set associated with any r-clique are mutually
disjoint. `

Lemma 4.3
Let UR = UR1 ∪ . . . ∪ URn be an update rule program. Let the retractable atom Pi occur in the maximal
set associated with some r-clique in the partition URj. Then, Pi may not be distinguished in a rule in any parti-

tion
k < j
∪ URk. Further, all rules q in URj in which Pi is distinguished must be r-update rules and they must par-

ticipate in this r-clique. `

Lemma 4.4
Let UR = UR1 ∪ . . . ∪ URn be an update rule program. Let the atom Pi occur in the maximal set associated

with some a-clique in the partition URj. Then, Pi may not be distinguished in a rule in any partition
k < j
∪ URk.

Further, all rules q in URj in which this Pi is distinguished (and occurs in a negative literal) must be an a-
update rule and they should participate in the a-clique. Pi may also be a distinguished atom (occurring in a
positive literal) in other rules in URj. Finally, Pi is unretractable in the UR program. `

Lemma 4.5
Let p and q be example a-update rules or r-update rules in URt. Then, all distinguished atoms in p or q, which
do not occur in a maximal set of atoms associated with some r-clique in URt, must be unretractable in URt. `

The proofs of these Lemmas follow directly from the relaxed stratification criterion for the update rule programs.
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Lemma 4.6

For any set of a-update rules participating in an a-clique in partition URk, or for any set of r-update rules parti-
cipating in an r-clique, at most one of the rules in the a-clique (or one of the rules in the r-clique) may execute (for a
given assignment for the variables, in the first order case).

The proof for the a-clique follows from the fact that for each a-update rule relevant to P i, participating in an
a-clique, all Pj, j ≠ t, in the maximal set, must be distinguished and occur in a negative literal in the a-update rule.
Thus, for the execution of any a-update rule in the a-clique, relevant to Pi, none of the Pj, j ≠ i, must be entailed by
EDBk. The execution of any one of the a-update rules in the a-clique will add some assert Pi, to EDBk and EDBk

will entail this Pi. From the definition of the stratification criterion, this Pi is unretractable in this partition, It follows
that since this Pi is distinguished and occurs in a negative literal in each of the other a-update rules in the a-clique,
none of these other rules may be executed. Thus, at most one a-update rule in an a-clique may be executed.

Similarly, for each r-update rule participating in an r-clique, all Q j in the maximal set must be distinguished
atoms in these r-update rules. Thus, for the execution of any r-update rule in the r-clique, each of the Q j must be
entailed by EDBk. The execution of any one of the r-update rules will add some retract Qj, to EDBk and EDBk

will not entail this Qj. It follows that none of the other rules may be executed and at most one r-update rule in an r-
clique will execute. `

4.3. Set-oriented and Tuple-oriented Execution of Rules

The difference between a tuple-oriented and a set-oriented execution, when the action(s) in the head of the
rules update one tuple, or a set of tuples, respectively, can be informally stated, as follows:

When the literals in the body of an update rule are evaluated against the relations of the database, and when a
single tuple or a set of tuples can be retrieved, corresponding to the action(s) in the head of the update rule, do
the following execution options produce identical fixpoints?

(1) a tuple-oriented execution -- execute the update action(s) in the head of the rule, corresponding to a single
selected tuple, and then re-evaluate the literals in the body of the rule against the updated database.

(2) a set-oriented execution -- execute the update action(s) in the head of the rule, corresponding to a single tuple,
some subset of the set of tuples or all the tuples in the set, simultaneously.

In our case, the syntactic criterion for admitting UR programs ensures that the fixpoint(s) obtained from the
set-oriented execution are a subset of the set of fixpoints corresponding to a tuple-oriented execution. This may be
of practical significance since the set-oriented execution is more efficient. We do not discuss this issue in detail in
this paper, and refer the reader to a discussion of implementation issues in [PaRa94].

5. A Declarative Semantics for Update Rule Programs

We have described a fixpoint semantics for UR programs which is guaranteed to terminate and to produce a
set of fixpoints for UR. To obtain a declarative semantics, we first associate a normal logic program URddd for a given
UR program. We use the stable model semantics of Gelfond and Lifschitz [GeLi88] to obtain a set of minimal
models for URddd which are called stable models. We show the equivalence between the set of fixpoints for UR and
the set of stable models for URddd.
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5.1. Obtaining a Normal Logic Program

To obtain a normal logic program URddd, the a-update rules that assert new tuples are treated like deductive rules
which define the asserted tuple. The r-update rules are similar to denial integrity constraints proposed in [KoSa89,
KoSa90]. A denial integrity constraint is given by a denial which is a conjunction of literals, followed by a retract-
able atom which is enclosed within [ ]. The retractable atom must occur in the conjunction of literals. An example
is as follows:

L1, L2, ..., Ln →. [Li ].

The meaning associated with this constraint is that L1 ∧ L2 ∧ . . . ∧ Ln cannot be true in the database, if the
database is to be consistent with the denial. If the denial is violated in the database, then consistency can be restored
by making one of the positive literals in the denial false. A single atom Li which occurs in the denial is chosen as
the retractable atom, and is specified as such in the constraint.

If we examine the following r-update rule:

ri: P, A1, ..., An, ¬B1, ..., ¬Bm → retract P

since the atom P which is retracted by the r-update rule must occur in the conjunction in the body of the rule, the r-
update rule is syntactically similar to the denial integrity constraints. We consider the conjunction in the body of the
r-update rule to correspond to the denial.

If we consider the forward chaining semantics of update rule programs, the r-update rules query the database
to determine if the condition in the body of the rule is true, i.e., the database must entail P and every literal Ak, but
must not entail any literal Bk. The condition will include the fact, P, that is to be deleted. When the condition is
true, the corresponding fact P, (which must exist), is deleted, so that the condition is no longer true in the database.
Operationally, this is very close to the task of maintaining an integrity constraint. When we consider related
research, we will examine different semantics where the deletion action corresponds to a negation.

There has been considerable research on the problem of maintaining consistency in databases, with respect to
a set of integrity constraints. Informally, a database must satisfy its integrity constraints as it changes over time.
Usually, an update to the database (more precisely an update to facts in the database) may cause the violation of an
integrity constraint. Such updates must be rejected or modified. Sometimes, the database itself, i.e., the initial facts
and the facts that are inferred from the rules, may be inconsistent with the constraints, and the database must be
modified to maintain consistency with the constraints. This is the approach we have taken to provide a semantics
for the updates.

The translation to obtain URddd uses as input the update rules of the program UR and the initial database EDBinit,
and produces the logic program URddd as output. For simplicity, we show this transformation for the propositional
case. The translation in the first order case is included in Appendix 1.

A Translation to obtain a Normal Logic Program

Step 1.

Each r-update rule which is relevant to the atom P transforms each a-update rule in UR which is relevant to
the atom P, or the fact P if it occurs in EDBinit.

Suppose the a-update rule relevant to P, is of the following form:

A1, ..., Aa, ¬B1, ..., ¬Bb → assert P.

where a or b could be equal to 0, i.e., P is a fact, is transformed by each r-update rule relevant to P, which is
as follows:
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P, C1, ..., Cc, ¬D1, ..., ¬Dd → retract P.

The following rules are placed in URddd, where P* is a special unused atom associated with each atom P in the
program:

C1, ..., Cc, ¬D1, ..., ¬Dd, → P*.

¬P*, A1, ..., Aa, ¬B1, ..., ¬Bb, → P.

Step 2
Each fact, say P, in EDBinit which is not modified by any r-update rule, i.e., there are no r-update rules in UR
relevant to P is placed in URddd.

Each a-update rule relevant to the atom P which is as follows:

A1, ..., Aa, ¬B1, ..., ¬Bb → assert P.

and which is not modified by any r-update rule in UR will derive the following rule in URddd:

A1, ..., Aa, ¬B1, ..., ¬Bb → P.

5.2. Stable Model Semantics

The program URddd may not be a stratified logic program and may not have a unique minimal model. We use
the stable model semantics to obtain a meaning for this program. A model theory for normal logic programs
[GeLi88] characterizes the meaning of a normal logic program by a set of minimal models called stable models,
which are defined using the Gelfond-Lifschitz transformation. This transformation is defined as follows.

Definition
Let P be a normal logic program and let I be an interpretation.

P I = { A ← B 1, ..., Bn : A ← B 1, ..., Bn , ¬ D 1, ..., ¬ Dm is a ground instance of a clause in P and
{D 1, ..., Dm } ∩ I = Φ}

P I is the Gelfond-Lifschitz transformation of P with respect to I , where the Ai , B j and Dl are atomic formu-
lae. `

The result of the Gelfond-Lifschitz transformation is a negation-free (definite) program. Stable models for
non-disjunctive logic programs may now be defined as follows:

Definition
Let P be a definite normal program. M is a stable model of P iff M is the unique minimal model of P M . `

5.3. Equivalence of the Fixpoint and Declarative Semantics

Theorem
Let URddd be the normal logic program derived from the update rule program UR corresponding to the set of
update rules and the initial database EDBinit.

A fixpoint of the operational semantics for UR represented by a final updated database EDBn, is identical to
one of the (k) stable models for the normal logic program URddd, as characterized by the stable model semantics.
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All of the (k) stable models for the corresponding normal logic program URddd, as characterized by the stable
model semantics, can each be non-deterministically obtained as a final updated database EDBn, from the UR
program.

The following figure is a graphical representation of this equivalence.

k final databases

rules

$EDB sub init$

UR

$UR bar$
Translation to
obtain a
normal logic program

for the program UR normal logic program $UR bar$

update

k stable models for the

Equivalence of each fixpoint or
updated database $EDB sub n$
with a stable model for $UR bar$

Figure 1. Equivalence Between the Fixpoint and Declarative Semantics

6. Proving the Equivalence of the Fixpoint and Declarative Semantics

In this section, we present the proof of equivalence of the fixpoint and declarative semantics.

6.1. Some Results from the Stable Model Semantics for Normal Logic Programs

We first present some results on the stable model semantics and the corresponding minimal (stable) models,
for some normal logic programs URddd. The normal logic programs that we consider will correspond to some interest-
ing UR program fragments. These results will be applied to the proof of equivalence of the fixpoint and declarative
semantics. The results are represented by the following lemmas, (expressed in the propositional case):

Lemma 6.1
Let URddd be a normal logic program derived from an update rule program fragment comprising a single (non-
overlapping) r-clique with a maximal set of atoms {P1,..., Pp}, where each Pi is a retractable atom, and the a-
update rules relevant to each Pi. Let Pi

* be the special atoms associated with each atom Pi in the maximal set.
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Suppose that all other distinguished literals in the rules may be ignored. Then there are p possible stable
models for URddd. In each stable model, exactly one of the p atoms in the maximal set will be false, the
corresponding special atom will be true, all other atoms in the maximal set will be true, and the corresponding
special atoms will be false.

To prove this result, let URddd be derived from a program fragment comprising a a set of r-update rules s1, ..., sp,
which form an r-clique with a maximal set of atoms {P1, ..., Pp}. To obtain URddd, we also consider any a-update rules
qk relevant to some atom Pk occurring in the maximal set of this r-clique. For simplicity, we assume that there are
exactly p r-update rules and p a-update rules, each one relevant to exactly one Pi. However, this lemma also applies
to the case where there may be several rules relevant to each atom. Since the r-clique is non-overlapping, none of
the r-update rules sk participate in another r-clique. For notational convenience, all other distinguished literals in the
rules are represented using some conjunction Conj-i,j.

The normal logic program URddd from the rules pk and sk, is as follows:

r1,1: P2, ...., Pp, Conj-1,1 → P1
*

: each r1,k is from sk: P1, .., Pk, .,Pp, Conj-1,k → retract Pk

r1,p: P1, ...., Pp−1, Conj-1,p → Pp
*

r2,1: ¬ P1
*, Conj-2,1 → P1 each r2,k is from sk transforming qk: Conj-2,k → assert Pk

:

r2,p: ¬ Pp
*, Conj-2,p → Pp

Assume that for all the stable models, all the distinguished atoms in each conjunction Conj-i,j are true and
each distinguished literal that occurs negatively in each conjunction is false. We may ignore each of these conjunc-
tions in the rules. This assumption will be clarified later.

Now consider some model Mk in which one Pk
* and all Pt, t ≠ k, (from the maximal set of atoms) are true. Pk

and all Pt
*, t ≠ k, are false in this model. To prove this is a stable model, we first apply the Gelfond-Lifschitz

transformation to obtain the negation-free program URdddMk. All rules r1,1 through r1,p will be unchanged in URdddMk

(ignoring the conjunctions). All rules r2,1 through r2,p, except r2,k, will be modified in URdddMk so that the special dis-
tinguished literals Pt

*, t ≠ k, occurring negatively in these rules are eliminated. These rules will be as follows:

r2,t : Conj-2,t → Pt

The rule r2,k (or set of rules) will be eliminated in URdddMk.

The above transformation is independent of whether there are one or more a-update rules and r-update rules
relevant to each Pi and the program that is obtained with multiple rules will be similar. Now, from the rule (rules)
r1,k (ignoring the conjunctions), we have Pk

* must be true. From each rule (rules) r2,t, t ≠ k, we have each Pt, t ≠ k,
must be true. Further, since rule (rules) r2,k is eliminated, Pk must be false. Since Pk is a distinguished atom in each
of the rules r1,t, t ≠ k, each Pt

*, t ≠ k, must be false. Thus, we have Mk is a stable model for the program.

Next, we prove that each such Mk is a minimal model for URdddMk. We prove this by considering the following
two cases:

Case 1
Suppose there is a model Mc1 which is a proper subset of Mk, in which Pk and one (or more) Px from the max-
imal set are false. However, from each rule (rules) r2,x in URdddMk, we have each Px, x ≠ k must be true. Thus,
this model is not stable.

Case 2
Suppose there is a model Mc2 which is a proper subset of Mk, in which the special atom Pk

* is false, i.e., none
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of the special atoms are true. Then, from rule (rules) r1,k in URdddMk, since Pk
* is false, at least one Px, x ≠ k,

must be false. However, from the rule (rules) r2,x in URdddMk, we have each Px, x ≠ k must be true. Thus, this
model is not stable.

Finally, we prove that the models Mk enumerated in Lemma 6.1, are the only stable models for the program,
by considering these following two cases:

Case 3
Suppose there is a model Mc3 in which all atoms in the maximal set are true. But we know that the rule
(rules) r2,k, relevant to Pk is eliminated in URdddMk. Thus, this model is not a stable model.

Case 4
Suppose there is a model Mc4 in which some Pk

* and one (or more) Py
*, y ≠ k, is true. From rule (rules) r1,y in

URdddMk, it follows that Pk must be true. However, the rule (rules) r2,k, relevant to Pk, is eliminated in URdddMk.
Thus, this model is not a stable model.

Thus, we have shown that there are p possible stable models, independent of whether there are several rules
relevant to each Pi in the maximal set. `

Lemma 6.2
Let URddd be a normal logic program derived from an update rule program fragment comprising overlapping r-
cliques with maximal sets of atoms {P1,..., Pp, C1,..., Cc} and {Q1,..., Qq, C1,..., Cc}, where {C1,..., Cc} are
common to both maximal sets. We also consider the relevant a-update rules. Each Pi, Qi and Ci is a retract-
able atom. Let Pi

*, Qi
* and Ci

* be the special atoms associated with the atoms in the maximal sets. Assume
that all other distinguished literals in the rules in URddd may be ignored. Then there will be (p ∗ q + c) possible
stable models. In (p ∗ q) of these models, exactly one Pk1 and exactly one Qk2, will be false and exactly one
Pk1

* and exactly one Qk2
* will be true. In addition all other Pt, t ≠ k1, and all other Qt, t ≠ k2, will be true and

these Pt
* and Qt

*, will be false. Finally, all Cs will be true and all Cs
* will be false. In c of these extensions,

exactly one atom Ck3 which is common to both the maximal sets is false, Ck3
* is true, all other atoms Ct, t ≠

k3, will be true and all Ct
*, t ≠ k3, will be false. In addition, in all these extensions, all Ps and all Qr will also

be true and all Ps
* and all Qr

* will be false.

The proof of Lemma 6.2 is omitted. `

Lemma 6.3
Let URddd be a normal logic program derived from an update rule program fragment comprising a single non-
overlapping a-clique with a maximal set of atoms {P1,..., Pp}. Assume that all other distinguished literals in
the rules in URddd may be ignored. Then there are p possible stable models for URddd, In each stable model, exactly
one of the p atoms in the maximal set will be true and all other atoms will be false.

To prove this result, let URddd be derived from a program fragment comprising a set of a-update rules s1.., sp,
which form an a-clique with the maximal set of atoms {P1,..., Pp}. For simplicity, we assume that there are exactly
p such rules, each one relevant to exactly one Pk. However, the lemma also applies with several rules relevant to
each Pk. Since the a-clique is non-overlapping, none of the a-update rules sk participate in another a-clique. All
other distinguished literals in the rules are represented using the conjunctions Conj-k. The normal logic program
URddd obtained from the rules is as follows:

r1 : ¬ P2, ..., ¬ Pp, Conj-1 → P1

rk is from sk : ¬ P1, .., ¬ Pk−1, ¬ Pk+1, .., ¬ Pp → assert Pk

rp : ¬ P1, ..., ¬ Pp−1, Conj-p → Pp.

Assume that for all the stable models, all the distinguished atoms in each conjunction are true and each dis-
tinguished literal that occurs negatively in each conjunction is false. We ignore each of these conjunctions in the
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rules.

Now consider some model Mk in which one Pk is true and all Pt, t ≠ k, (from the maximal set) are false. To
prove this is a stable model, we first apply the Gelfond-Lifschitz transformation to obtain the negation free program
URdddMk. All rules r1 through rp except the rule rk will be eliminated in URdddMk since Pk is a distinguished literal occur-
ring negatively in these rules. The rule rk will be modified as follows:

rk : Conj-k → Pk

The transformed program will be similar if there are several rules relevant to each of the predicates P i. From
this rule (rules) rk, ignoring the conjunction, we have Pk must be true. Thus each Mk is a stable model.

To prove that each Mk is a minimal model, we only need consider the empty interpretation since it is the only
proper subset of any Mk. However, from the rule (or rules) rk in URdddMk, we have Pk is true, and so this is not stable.

There can be no other possible models for URdddMk which are minimal models. Thus, there are p possible
models, and this independent of whether there are multiple rules relevant to each Pi. `

Lemma 6.4:
Let URddd be a normal logic program derived from an update rule program fragment comprising overlapping a-
cliques with maximal sets of atoms {P1,..., Pp, C1,..., Cc} and {Q1,..., Qq, C1,..., Cc}, where {C1,..., Cc} are
common to both maximal sets. Assume we ignore all other literals in URddd. Then there will be (c + p ∗ q) pos-
sible stable models. In (p ∗ q) of these models, exactly one Pk1 and exactly one Qk2, will be true. All other Pt,
t ≠ k1, and all other Qt, t ≠ k2, as well as all other Ct, will be false. In c of these models, exactly one atom Ck3

which is common to both the maximal sets is true. All other atoms Ct, t ≠ k3, will be false as well as all Ps

and all Qr.

The proof of Lemma 6.4 is omitted. `

6.2. Soundness and Completeness of the Fixpoint Semantics

The proof that the fixpoint semantics is sound and complete wrt the declarative semantics for the correspond-
ing normal logic program URddd is presented in this section. This proof builds upon a previous result for strictly-
stratified UR programs. In [Rasc94], we have shown that a stratified logic program can be obtained corresponding
to each strictly-stratified UR program. We have further shown that the fixpoint semantics for the strictly-stratified
UR program is sound and complete with respect to the declarative semantics for the corresponding stratified logic
program. This theorem is as follows:

Theorem [Rasc94]

Suppose UR− = UR−
0 ∪ UR−

1 ∪ . . . ∪ UR−
n is a strictly-stratified UR program. Let UR−(0,..,i)ddddddddd be the

stratified logic program corresponding to the initial database EDB0 (or UR−
0) and the rules in the partitions,

UR−
1 ∪ . . . ∪ UR−

i. Let MUR−(0,..,i)ddddddddd be the standard model for UR−(0,..,i)ddddddddd. Then, EDB−
i entails MUR−(0,..,i)ddddddddd. In

other words, if P is true in MUR−(0,..,i)ddddddddd then EDB−
i entails P, and if P is false in MUR−(0,..,i)ddddddddd then EDB−

i does not

entail P.

Recall from Lemma 4.1 that by removing all the r-update rules that participate in any r-cliques and the a-
update rules that participate in any a-cliques, we can obtain a strictly-stratified UR program from the update rule
program UR. Building upon this previous theorem for the strictly-stratified UR programs, we will start from a
strictly-stratified UR program and then introduce into each partition in turn, the r-update rules that participate in r-
cliques or the a-update rules that participate in a-cliques. We allow these rules to execute until a fixpoint is obtained
for this partition. We will then show that the fixpoint semantics for the resulting UR program, after these r-update
rules and the a-update rules are introduced into each partition, is sound and complete wrt the declarative semantics
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for the corresponding normal logic program URddd. We present the proof in the propositional case. It should hold in
the function free first order case where all terms are ground.

Definition
Let URddd be a normal logic program. Then, a distinguished atom P in a rule has a positive dependency on an
atom Q if and only if P occurs in the head of a rule p and Q is a distinguished atom in p, or if R is a dis-
tinguished atom in the rule p and R has a positive dependency on Q.

Theorem
Let URddd be the normal logic program derived from an update rule program UR.

Each fixpoint from the UR program, represented by a final updated database EDBn, will entail one of the
stable models that characterize URddd.

Each of the stable models that characterize URddd is entailed by a fixpoint or final updated database EDBn, from
the UR program. 1

Proof

Let UR = UR0 ∪ UR1 ∪ . . . ∪ URn be an update rule program UR, where UR0 = EDB0.

Let UR(0,..,i)dddddddd be the normal logic program derived from the initial database EDB0 and the rules in the parti-
tions, UR1 ∪ . . . ∪ URi.

Let UR− = UR−
0 ∪ UR−

1 ∪ . . . ∪ UR−
n be the strictly-stratified UR program that is obtained by eliminating

the r-update rules in each of the r-cliques and the a-update rules in each of the a-cliques, in each of the parti-
tions of UR.

Let UR−(0,..,n)ddddddddd be the stratified logic program corresponding to the strictly-stratified UR program UR−.

Base Case
The base case is to prove that EDB0 entails MUR−(0)ddddddd. By definition, there are no update rules in UR0 and

UR−(0)ddddddd is identical to the initial database EDBinit. The proof trivially follows from the definition of EDB0.

Inductive Case
Given EDBi entails a stable model Mi for the corresponding normal logic program UR(0,..,i)dddddddd, and

EDB−
i+1 = TUR−

i+1
↑ω (EDBi), the fixpoint for the update rules in UR−

i+1 evaluated over EDBi, entails the stan-

dard model for the stratified logic program derived from M i ∪ UR−(i+1)ddddddddddddd [Rasc94],

then, each EDBi+1 entails a stable model for the corresponding normal logic program UR(0,..,i+1)dddddddddd. In addi-
tion, each stable model for UR(0,..,i+1)dddddddddd is entailed by some fixpoint EDBi+1 for the update rules in URi+1.

Suppose we introduce the update rules in URi+1 which participate in either r-cliques or a-cliques. Executing
these update rules will only affect the atoms that occur in some maximal set associated with an r-clique or an a-
clique. By Lemma 4.2, these sets of atoms are mutually exclusive, so we can independently consider the effect of

1 The special literals P*, corresponding to each literal P in some maximal set only occur in the corresponding normal logic pro-
gram and they do not occur in the update rule program. They are not entailed in the fixpoint of the update rule program and
hence they are not considered in the proof of the equivalence between the fixpoints of the update rule program and the stable
models for the corresponding normal logic program.
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introducing the r-cliques or the a-cliques. Lemmas 4.3, 4.4 and 4.5 place restrictions on the atoms in the maximal
sets, so that they may only be distinguished in certain rules in URi+1 and they are not retractable in URj, j > i+1.

Following these restrictions, the only rules of the stratified logic program UR−(0,i+1)ddddddddd that will be modified in the
normal logic program UR(0,i+1)ddddddddd, through the introduction of the a-cliques or the r-cliques in this partition, are those
rules that are relevant to the atoms in the maximal sets. The Inductive Case will thus be presented independently
for the a-cliques and the r-cliques, respectively, and for each we will present a (nested) base case (no overlaps) and
an inductive case (with overlaps).

Nested base case for a-cliques

We consider one (or more) non-overlapping a-clique, comprising a-update rules s1 through sp, with p atoms in the
maximal set {P1,..., Pp}, in the program. The rules are as follows:

sk: ¬P1, .., ¬Pk−1, ¬Pk+1, .,¬Pp, Conj-k → assert Pk

The corresponding normal logic program UR(0,1)ddddddd is in Lemma 6.3. Since the cliques are non-overlapping,
they may each be considered separately, and we base the analysis on the following four sub-cases:

Sub-case B.a.1:
Suppose EDB−

i+1 entailed one (or more) Pk. Then from Lemma 4.4, since this atom Pk is unretractable, we
have EDB1 will also entail this atom. Pk will be true in each fixpoint. If we consider the corresponding logic

program of Lemma 6.3, the rule(s) in the program UR−(0,i+1)ddddddddd that prove Pk, or the fact Pk, and the
corresponding rule(s) in any UR(0,i+1)dddddddddM, transformed wrt some stable model M, will not be affected by the
introduction of the rule(s) derived from the a-update rule(s) sk. Thus, Pk will be true in each of the stable
models for UR(0,i+1)ddddddddd.

Sub-case B.a.2:
Suppose EDBi does not entail some Pk occurring in this maximal set. Further, suppose that some dis-
tinguished atom Ck in the corresponding conjunction Conj-k in sk is not entailed by EDB−

i+1 and is false in
MUR−(0,i+1)ddddddddd. Finally, suppose this Ck does not have a positive dependency on any atom in the maximal set of

any a-clique. Alternately, suppose some distinguished literal Dk that occurs negatively in Conj-k is entailed
by EDB−

i+1 and is true in MUR−(0,i+1)ddddddddd. From Lemma 4.5, these literals in Conj-k are unretractable in UR1. Now

sk will not execute and both EDB−
i+1 and EDBi+1 will not entail this Pk and it will be false in each fixpoint. In

this case, the rule(s) rk corresponding to Pk will either be eliminated in the corresponding program
UR(0,i+1)dddddddddM, transformed wrt some stable model M, (if Dk is true), or it will not be able to prove Pk (if Ck is
false). It follows that Pk will be false in any stable model for UR(0,i+1)ddddddddd.

Sub-case B.a.3:
Suppose EDBi does not entail some Pk in this maximal set. Further, suppose that some distinguished atom Ck

in the corresponding conjunction Conj-k in sk is not entailed by EDB−
i+1 and is false in MUR−(0,i+1)ddddddddd. Finally,

suppose that Ck has a positive dependency on some atom which occurs in the maximal set of this a-clique, and
which is not entailed by EDB−

i+1. For simplicity, we assume that all other literals in Conj-k may be ignored
(although this is not necessary for the proof). Suppose this atom Ck, which is distinguished in Conj-k, has a
positive dependency on Pk, i.e., the atom in the head of the same rule. Then, sk will not execute. EDB1 will
not entail Ck or Pk. If we examine the corresponding stable models for UR(0,i+1)ddddddddd, Ck cannot be true in any
(minimal) stable model. Any model in which Pk is true will be unstable, since Ck is false. Thus, both Pk and
Ck must be false in every stable model. Alternately, suppose Ck has a positive dependency on some Pt that
occurs in the maximal set, t ≠ k. In this case, too, sk cannot execute since some other rule(s)st in the a-clique
must execute first so that EDB1 entails Pt. But from Lemma 4.6, if some st executes, then sk cannot execute.
Thus, EDBi+1 will not entail Pk but may entail Ck and Pt, t ≠ k. If we examine the corresponding stable
models for UR(0,i+1)ddddddddd, any model in which Pk is true must also include Ck and Pt, t ≠ k, to be stable. But such
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a model in which both Pk and some Pt, t ≠ k, are true is not a minimal model for the corresponding program
(from Lemma 6.3). Thus, Pk will not be true in any stable model.

Sub-case B.a.4:
One sub-case of interest is where EDB−

i+1 does not entail each of the Pk. Next, suppose that for at least one
conjunction Conj-k, all distinguished atoms are entailed by EDB−

i+1 and are true in MUR−(0,i+1)ddddddddd and all dis-

tinguished literals that occur negatively are not entailed and are false. It follows that the corresponding a-
update rule sk can execute and EDBi+1 will entail this Pk. Now since Pk is distinguished and occurs negatively
in all other a-update rules participating in this a-clique, it follows that none of the other a-update rules may
execute. The interesting case is where we can ignore all the conjunctions Conj-k (as was done in the proof of
Lemma 6.3). If all of the a-update rules may execute, then there are p possible fixpoints for URi+1,
corresponding to this a-clique. In each of the fixpoints exactly one of the Pk will be true and all other atoms in
the maximal set will be false. If we consider the results of Lemma 6.3, we see that these fixpoints correspond
exactly to the p possible stable models for the logic program UR(0,i+1)ddddddddd.

Sub-case B.a.5
A final situation is to suppose that Ck, some distinguished atom in Conj-k, has a positive dependency on some
atom that occurs in the maximal set of some other non-overlapping a-clique. This situation differs from B.a.4
in that EDBi may not entail this Ck but it may be entailed in EDBi+1, after introducing the non-overlapping a-
clique. If EDBi+1 indeed entails Ck, then this sub-case will be similar to sub-case B.a.4, where the rule sk may
execute. If EDBi+1 does not entail Ck, then it is similar to sub-case B.a.2, where the rule sk cannot execute.

Nested inductive case for a-cliques

Suppose the fixpoints for programs with n a-cliques that overlap in URi+1 entail all possible stable models for the
corresponding Gelfond-Lifschitz transformed programs. Now consider introducing another a-clique which overlaps
with the previously overlapping n a-cliques, i,e,, there are n+1 overlapping a-cliques. Each of the overlaps of this
clique with one of the n other cliques may be represented as a set of a-update rules s1 through sp+c, relevant to p+c
atoms {P1,..., Pp, C1,..., Cc } and a set of a-update rules u1 through uq+c, relevant to q+c atoms {Q1,..., Qq, C1,..., Cc}.
{C1,...,Cc} represent the overlapping atoms common to the maximal sets, for each of the overlaps with the n a-
cliques, respectively. The rules are as follows, where sk1 is representative of rules s1 through sp, and sp+k3 is
representative of rules sp+1 through sp+c, etc. : 1

sk1: ¬P1, .., ¬Pk1−1, ¬Pk1+1, ..,¬Pp, ¬C1, ..., ¬Cc, Conj-s,k1 → assert Pk1

sp+k3: ¬P1, ..,¬Pp, ¬C1, ..., ¬Ck3−1, ¬Ck3+1, ..., ¬Cc, ¬Q1, ..., ¬Qq, Conj-s,p+k3 → assert Ck3

uk2: ¬Q1, .., ¬Qk2−1, ¬Qk2+1, ..,¬Qq, ¬C1, ..., ¬Cc, Conj-u,k2 → assert Qk2

uq+k3: ¬Q1, ..,¬Qq, ¬C1, ..., ¬Ck3−1, ¬Ck3+1, ..., ¬Cc, ¬P1, ..., ¬Pp, Conj-u,q+k3 → assert Ck3

The corresponding normal logic program UR(0,i+1)ddddddddd, for each of these n overlaps, is in Lemma 6.4. We con-
sider several sub-cases as follows:

Sub-case I.a.1
In this sub-case, each of the a-update rules s1 through sp+c and u1 through uq+c do not execute. The conditions
for these rules to not execute are already detailed in sub-cases B.a.1 through B.a.3, and B.a.5, of the base case.
There is a slight variation that must be considered in sub-case B.a.5, since now there are overlaps among the

1 Note that the a-update rules that are relevant to the overlapping atoms in the maximal sets are repeated in this program and
should not be considered to be different rules.
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a-cliques. For this case, we may suppose that Ck1, some distinguished atom in Conj-s,k1, has a positive
dependency on either some atom Qk2 (which is not an atom in the overlap) or on some atom which occurs in
the maximal set of some other a-clique with which there is no overlap at all. In all of these sub-cases, the
overlap with each of the n a-cliques is itself not significant, and the analysis is similar to the base case for a-
cliques. We omit this discussion here.

There are several sub-cases of interest where the a-update rules may execute, and they are as follows:

Sub-case I.a.2:
Suppose EDB−

i+1 does not entail each of the Pk1 and Ck3 occurring in the maximal set for rules s1 through sp+c.
Further, suppose that we can ignore each of the conjunctions in the a-update rules relevant to each Pk1 and
each Ck3, i.e., all distinguished atoms are entailed by EDB−

i+1 and are true in MUR−(0,i+1)ddddddddd , and all distinguished

literals occurring negatively are not entailed and are false. Thus, the rules s1 through sp+c may execute. How-
ever, the a-update rules u1 through uq+c may not execute (similar to the situation described in one of the previ-
ous sub-cases of the base case (B.a.1 through B.a.3 and B.a.5).

Sub-case I.a.3:
Suppose the rules s1 through sp+c may not execute (similar to one of the sub-cases B-a.1 through B.a.3 and
B.a.5) but the rules u1 through uq+c may execute.

Each of these two sub-cases will now reduce to n overlapping a-cliques and the result follows from the state-
ment of the inductive case for n overlapping a-cliques.

Sub-case I.a.4:
Suppose EDB−

i+1 does not entail each of the Pk1, Qk2 and Ck3 occurring in both maximal sets. Further, sup-
pose that we can ignore each of the conjunctions in the a-update rules relevant to each Pk1, Qk2 and each Ck3.
We made this assumption when proving the results of Lemma 6.4. Now any of the a-update rules in the over-
lapping a-cliques may execute. Suppose an a-update rule sk1 were to execute and entail some Pk1. From
lemma 4.6, no other a-update rule st, t ≠ k1, could execute and no other Pt, t ≠ k1, may be entailed. Similarly,
no Ct may be entailed. However, exactly one a-update rule uk2 can execute and entail exactly one Qk2. Sup-
pose on the other hand that some a-update rule relevant to some Ck3 were to execute and entail some Ck3.
Then, from Lemma 4.6, no other Ct, t ≠ k3, may be entailed nor any other Qt or Pt. It follows that there are
exactly (p ∗ q + c) possible fixpoints, exactly corresponding to the (p ∗ q + c) stable models of the program
UR(0,i+1)ddddddddd, as seen in Lemma 6.4.

Nested base case for r-cliques

We consider one (or more) non-overlapping r-clique with p retractable atoms in the maximal set {P1,..., Pp}. The p
r-update rules s1, .., sp participating in the r-clique are as follows:

sk: P1, .., Pk, ..,Pp, Conj-s,k → retract Pk

The a-update rules pk which are relevant to the retractable atoms in the maximal set of atoms associated with the r-
clique and and are modified by these r-update rules are as follows:

pk: Conj-p,k → assert Pk

From Lemma 4.2, we know that these a-update rules may not participate in an a-clique. The corresponding
normal logic program UR(0,i+1)ddddddddd is in Lemma 6.1. Since the cliques are non-overlapping, each can be analyzed
separately, based on the following sub-cases:

Sub-case B.r.1:
Suppose that some distinguished atom Ck in Conj-s,k is not entailed by EDB−

i+1 and is false in MUR−(0,i+1)ddddddddd .

Further suppose that this atom Ck does not occur in the maximal set of any a-clique in URi+1, nor does it have
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a positive dependency on any other atom that occurs in a maximal set of an a-clique. Alternately, suppose
some distinguished literal Dk that occurs negatively is entailed by EDB−

i+1 and is true in MUR−(0,i+1)ddddddddd. From

Lemma 4.5, these literals are unretractable in URi+1. In this case, the corresponding r-update rule(s) sk will
not be able to execute. If EDB−

i+1 entailed the corresponding atom Pk, then, EDBi+1 will also entail this atom.

If we consider the corresponding logic program of Lemma 6.1, and the program UR(0,i+1)dddddddddM transformed wrt
to any stable model M, the rule(s) r1,k, derived from sk, will either be eliminated (if Dk is true), or it will not be

able to prove Pk
* (if Ck is false). Pk

* will be false in any stable model. Consider the rule(s) r2,k in UR−(0,i+1)ddddddddd,
relevant to Pk and which is derived from pk transformed by sk. It will be unchanged in any transformed pro-
gram UR(0,i+1)dddddddddM, since the literal Pk

* occurring negatively in this rule will be eliminated. We do not further
consider this case since the fixpoint EDBi+1 remains unchanged from EDB−

i+1 wrt this atom Pk, and the

corresponding rules relevant to Pk, in any UR(0,i+1)dddddddddM, remain unchanged from UR−(0,i+1)ddddddddd.

Sub-case B.r.2:
Similarly, suppose EDBi does not entail some Pk occurring in this maximal set. Further, suppose that some
distinguished atom Ck in the corresponding conjunction Conj-p,k in pk is not entailed by EDB−

i+1 and is false
in MUR−(0,i+1)ddddddddd. Again, we assume the same restrictions for Ck as in B.r.1. Alternately, suppose some dis-

tinguished literal Dk that occurs negatively is entailed and is true. Now, pk will not execute, and both EDB−
i+1

and EDBi+1 will not entail this Pk. The corresponding rule(s) r2,k will not be able to prove Pk in UR−(0,i+1)ddddddddd.
Also, in any UR(0,i+1)dddddddddM, transformed wrt any stable model M, rule(s) r2,k will either not be able to prove Pk

or will be eliminated. Thus, this case is similar to the previous case B.r.1.

Sub-case B.r.3:
One case of interest is where we can first ignore all the conjunctions Conj-p,k. This was one of the assump-
tions made to prove the results of Lemma 6.1. First, suppose all distinguished atoms in all such conjunctions
Conj-p,k are entailed by EDB−

i+1 and are true in MUR−(0,i+1)ddddddddd and all distinguished literals that occur negatively

in these conjunctions are not entailed and are false. Now EDB−
i+1 will entail all Pk and they will all be true in

MUR−(0,i+1)ddddddddd . Next, suppose that for at least one conjunction Conj-s,k, all distinguished atoms are entailed by

EDB−
i+1 and are true in MUR−(0,i+1)ddddddddd and all distinguished literals occurring negatively are not entailed and are

false. It follows that the corresponding r-update rule sk can execute and EDBi+1 will not entail Pk. From
lemma 4.6, none of these other r-update rules st, t ≠ k, can execute. Thus, EDBi+1 will not entail some Pk and
will entail all other Pt, t ≠ k.

In the most general case, suppose that for all the r-update rules participating in the r-clique, we can ignore all
the conjunctions, Conj-s,k (as was done. in Lemma 6.1). It follows that any of the r-update rules participating
in this r-clique may execute and from Lemma 4.6, only one r-update rule in the r-clique will execute. There
will be p possible fixpoints represented by some EDBi+1. Each fixpoint will not entail exactly one Pk and will
entail all other Pt, t ≠ k.

From Lemma 6.1, when we correspondingly ignore all the literals in the conjunctions Conj-s,k and Conj-p,k,
we have that there are exactly p stable models for the corresponding normal logic program UR(0,i+1)ddddddddd. In
each of these stable models, exactly one retractable atom of the maximal set of atoms will be false and all
other retractable atoms will be true, where we ignore the special literals P* introduced into the normal logic
program. Thus, each possible fixpoint exactly entails one possible stable model and vice versa, ignoring the
special literals introduced into the normal logic program.

Sub-case B.r.4:
Suppose that some distinguished atom Xk in Conj-s,k in some rule sk (or in Conj-p,k in some rule pk) is not
entailed by EDB−

i+1 and is false in MUR−(0,i+1)ddddddddd. Further suppose this atom Xk either occurs in the maximal set
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of some a-clique in URi+1, or it has a positive dependency on some other atom that occurs in a maximal set of
an a-clique. Now, after executing the rules in the a-clique, EDBi+1 may entail Xk. This sub-case is different
from B.r.1 and B.r.2, in that EDB−

i+1 will not entail Xk, but Xk may be entailed by the fixpoint EDBi+1. The
rules sk (or pk) may or may not execute, depending on the sequence of execution of the rules, when the rules
in the a-cliques and the r-cliques are introduced. For example, if a rule in some a-clique entailed Xk, then pk

alone or sk and pk may execute. However, if some other rule st t ≠ k, in the r-clique, executes first, then sk will
not execute. If some rule in the r-clique does not execute, then this sub-case will be similar to B.r.1 or B.r.2,
and if some rule does execute, then this sub-case will reduce to some form of the previous sub-case B.r.3.

Nested inductive case for a-cliques

Suppose the fixpoints for a programs with n r-cliques that overlap in URi+1 entail all possible stable models for the
corresponding Gelfond-Lifschitz transformed programs. Now consider introducing another r-clique which overlaps
with the previously overlapping n r-cliques, i.e., there are n+1 overlapping r-cliques. Each of the overlaps of this r-
clique with one of the n other cliques may be represented as a set of r-update rules u1 through up+c, relevant to p+c
atoms {P1,..., Pp, C1,..., Cc } and and a set of r-update rules s1 through sq+c, relevant to q+c atoms {Q1,..., Qq, C1,...,
Cc}. {C1,...,Cc} represent the overlapping atoms common to the maximal sets, for each of the overlaps with the
other n r-cliques. These overlapping r-cliques are as follows: 1

uk1: P1, .., Pk1, ..,Pp, C1, ..., Cc, Conj-p,k1 → retract Pk1

uk3: P1, .., Pp, C1, ..., Ck3, ..., Cc, Q1, ..., Qq, Conj-u,k3 → retract Ck3

sk2: Q1, .., Qk2, .., Qq, C1, .., Cc, Conj-s,k2 → retract Qk2

sk3: Q1, .., Qq, C1, ..., Ck3, ..., Cc, P1, ..., Pp, Conj-s,k3 → retract Ck3

The a-update rules which are relevant to these retractable atoms and are modified by the r-update rules are as fol-
lows:

pk1: Conj-p,k1 → assert Pk1

pk2: Conj-p,k2 → assert Qk2

pk3: Conj-p,k3 → assert Ck3

From Lemma 4.2, these a-update rules do not participate in an a-clique. The corresponding normal logic pro-
gram is as listed in Lemma 6.2. As in the analysis of the previous nested base case for r-cliques, there are several
situations that are not of much interest. For example, when all of the a-update rules and r-update rules cannot exe-
cute (detailed in B.r.1 and B.r.2), the overlap with each of the n a-cliques is itself not significant. Similarly, if we
can ignore all the a-update rules and r-update rules relevant to some overlapping maximal set , then this reduces to
the case of n overlapping r-cliques and the result follows from the statement of the nested inductive case for n over-
lapping cliques. We do not list these sub-cases here for readability.

Sub-case I.r.1:
One interesting case is to suppose EDB−

i+1 will entail all Pk and all Cm as well as all Qt and they will all be
true in MUR−(0,i+1)ddddddddd . Once more we suppose that we can ignore some (or all) of the conjunctions Conj-u,k,

Conj-u,m, Conj-s,t or Conj-s,m. 1

Now either exactly one rk1 and exactly one sk2 will execute and EDBi+1 will not entail exactly one Pk1 and
exactly one Qk2. An alternative is that exactly one r-update rule rk3 (or sk3) will execute and EDBi+1 will not
entail exactly one Ck3 In the most general case, suppose that any of the r-update rules participating in the

1 Note that the r-update rules that are common to the intersecting r-cliques are repeated.
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mutually overlapping r-cliques may be chosen for execution. Then, since there are (p+c) and (q+c) atoms in
the maximal sets, respectively, with c mutually overlapping literals, there will be (c + p ∗ q ) possible
fixpoints, in this most general case.

We note that we ignored the various conjunctions in the rules of the corresponding normal logic program in
the proof of Lemma 6.2. We further note from Lemma 6.2, that the (p ∗ q + c) possible fixpoints that we have
enumerated for the most general case exactly correspond to the stable models for the normal logic program, ignor-
ing all the special literals introduced into the normal logic program. We refer the reader to Lemma 6.2 for the
details.

Sub-case I.r.2:
The final sub-case of interest is where some distinguished atom Xk in one of the a-update rules (that do not
participate in any a-clique) or any of the r-update rules of any r-clique, is not entailed by EDB−

i+1 and is false
in MUR−(0,i+1)ddddddddd. However, suppose this atom Xk either occurs in the maximal set of some a-clique in URi+1, or it

has a positive dependency on some other atom that occurs in a maximal set of an a-clique. The execution of
the rules in this a-clique may entail Xk. This sub-case is similar to B.r.4 in that EDB−

i+1 will not entail Xk, but
Xk may be entailed in the fixpoint EDBi+1. As before the r-update rules in the r-cliques and the a-update rules
(that do not participate in any a-cliques) may or may not execute, depending on the execution sequence of the
rules in the a-cliques and the r-cliques. This case may be similar to I.r.1 if Xk is entailed or it will reduce to n
overlapping r-cliques if Xk is not entailed. We omit the detailed discussion. `

7. Comparisons with Related Research

We now compare our research with related research in providing a semantics for update rules as well as
research on implementing rules in a DBMS. There has been considerable research to define a correct semantics for
update rule programs. In [FKUV86], a general framework for dealing with updates is presented. The problem they
consider is updating a theory by inserting and/or deleting sentences. A theory T is defined as a consistent set of sen-
tences, in particular, a set of first-order, well-formed closed formula. The set of logical consequences of the theory
is denoted T*. Let σ be a sentence. Then, the theory S accomplishes the update corresponding to the insertion of σ
into T if σ is an element of S. Similarly, S accomplishes the update corresponding to the deletion of σ from T if σ ∈/
S*. Notice that the inserted sentence is explicit in S. Now suppose that T ∪ σ is inconsistent but σ is to be inserted,
or that σ is to be deleted while σ ∈ T*. In both of these cases, a minimal new theory S must be defined. Suppose
that T1 and T2 are both theories that accomplish the update. Then, the authors define what it means for T1 to accom-
plish the update with a smaller change than T2. Now, S accomplishes an update u of T minimally if there is no
theory S′ which accomplishes update u with a smaller change than S.

The research in [FKUV86] provides a conceptual framework for defining a semantics for updating sentences
in a theory. The problem we address is a simpler problem since our database corresponds to a set of facts. The UR
program comprises an initial database of facts EDBinit and a set of update rules. Intuitively, the a-update rules that
assert new facts are similar to deductive rules since each rule asserts new information based on some condition that
is satisfied by the database. The r-update rules that retract facts intuitively resemble integrity constraints. They
check the database for conditions that must not hold. If the condition does hold, then they retract some information
that exists in the database so the condition no longer holds. This is very similar to the process of maintaining
integrity constraints in a DBMS environment. Our objective then is to obtain a final database for the initial facts and
the new facts that are asserted such that this final database is minimal, and is consistent with the conditions specified
by the r-update rules, representing the integrity constraints.
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Our approach is different from the framework suggested in [FKUV86] since we treat the r-update rules as
integrity constraints. The final database must satisfy these integrity constraints. As a result, information which is
explicitly specified by the user in the initial database EDBinit may be later retracted by some update rule, in order to
maintain an integrity constraint. The same is true for information which is explicitly deleted by the user since it
may be asserted by another rule. In contrast, in [FKUV86], information which is explicitly updated or retracted by
the user is not changed. Another feature of our fixpoint semantics is that when a tuple is retracted by a rule, then
subsequent assertions (of the tuple) have no effect and the database will not entail this tuple.

To obtain a declarative semantics, we associate a normal logic program, URddd, with a UR program comprising
of the initial database EDBinit and the update rules. The stable model semantics for normal logic programs [GeLi88]
associates a set of minimal models which are called stable models with a normal logic program URddd. A stable model
for URddd must be equivalent to the database obtained through the execution of the update rules of UR. The stable
model is consistent with the conditions specified by the integrity constraints. This approach to providing a declara-
tive semantics based on the stable model semantics of a corresponding normal logic program is also different from
other research in this area.

The most extensive research in update rules has been described in [AbSV90, AbVi90, AbVi91]. They extend
Datalog programs together with a procedural component as a means of overcoming the limited expressive power of
purely declarative semantics, for example, the inability to capture updates in pure Datalog programs. The focus is
on the expressive power of the languages. Theoretical results on computational complexity are discussed. They
also investigate the connections between Datalog extensions with fixpoint semantics, explicitly procedural
languages and fixpoint extensions of first order logics. The Datalog extensions that are considered include negative
literals in the body of the rules as well as in the heads. They define invented values which correspond to free vari-
ables occurring in the heads of rules. Negative literals in the heads of rules are interpreted as deletions. Both deter-
ministic and non-deterministic semantics for Datalog programs extended with negation are discussed. In a deter-
ministic execution, all the rules whose bodies are satisfied in the database will be chosen simultaneously, and their
updates applied to the database, so that the order of executing rules is not significant. The issue of applying the
updates of more than one rule simultaneously has also been addressed by other researchers in the context of set-
oriented execution, as will be discussed.

In our research, we are interested in a much smaller class of update rules whose fixpoint semantics can be
correctly implemented in a relational DBMS with extensions. Another difference is that update rules which delete
facts are interpreted by us as integrity constraints. This is intuitively closer to the meaning commonly associated
with rules that delete facts, from the perspective of a designer in a DBMS environment. This contrasts with their
solution of equating deletions with negative conclusions in the heads of rules. Our fixpoint semantics is non-
deterministic in that the fixpoint operator selects a single rule from a partition, in each step. Since the order of rule
selection is significant, it could produce more than one final database.

The research most similar to our approach is described in [MaSi88, SiMa88]. They consider production rule
languages that are extensions of logical query languages such as Datalog with updates in the head of the rules. They
provide an operational and declarative semantics for stratified Datalog programs that have a sequence of updates in
the heads of the rules. Their declarative semantics is similar in spirit to modal logics. In addition to an implicit ord-
ering of the rules due to stratification, explicit ordering is also considered. In our research, we have extended the
concept of stratification for update rules to permit us to represent non-deterministic programs, but we use no explicit
control. Their execution model is based on a Predicate Compilation Network (PCN) and is derived from Petri-Net
models. One drawback is that in the PCN model for rule execution, there may not be a stable state associated with
the network representing the rule programs; this implies that rule execution may not terminate. They use explicit
control during rule execution to deal with this problem. Our execution semantics is based upon a monotonic
fixpoint operator. Asserts and retracts are explicitly stored and the fixpoint operator guarantees termination of rule
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execution. We do not require any explicit control information for the execution to terminate.

We note that although we have not considered programs with multiple updates in the head of a rule, this is a
straightforward extension. Another difference from the research in [MaSi88] is that we interpret update rules which
delete information as integrity constraints; we feel that this is more intuitive with the use of these rules from the
viewpoint of DBMS designers. We are also interested in identifying a class of programs that can be easily imple-
mented in a DBMS. Executing a rule must be very similar to query execution so that all the techniques developed
for the efficient execution of queries is applicable to rule execution as well.

There has been some research in update semantics in conjunction with logic programming research
[MaWa88, NaKr88]. In the language proposed in [MaWa88], updates can occur in the body of the rules, as well as
in the heads. In the language proposed in [NaKr88], the updates occur only in the body of the rules. The declara-
tive semantics for both proposals are based on modal logics. The focus of their research is in providing a formal
semantics; implementations are based on a proof theory, which is not as applicable in a DBMS environment where
the rule execution is usually implemented to be a forward chaining evaluation.

Finally, we discuss related research in [CeWi90, Wido91, WiFi90], which describes implementing production
rules in a DBMS environment. A very powerful set-oriented production rule language is defined and an execution
semantics which is also set-oriented is provided in [WiFi90]. Since the language is set-oriented, there is a related
issue of whether a tuple-oriented and a set-oriented implementation will provide the same or different answers; this
is an important issue if a precise semantics for the program is to be defined. We note that although the set-oriented
execution described in [WiFi90] will apply the changes of multiple rules simultaneously, it does not necessarily pro-
duce a deterministic answer, and the order of execution of each rule is significant. Their semantics is therefore dif-
ferent from the deterministic semantics of [AbSV90]. If we consider our rule language, the syntactic restrictions we
place on the UR programs guarantees that a set-oriented execution is a special case of the tuple-oriented execution.
We see this as an advantage since the set-oriented execution is similar to query processing in a DBMS and can be
efficient.

The focus of the research in [Wido91, WiFi90] is on the computational procedures required to determine
when to trigger rule execution, and determining when no more rules can be executed. They have identified the con-
cept of a transition table to represent all the tuples which are affected by executing a transaction; the transition table
is critical in determining when the rules are to be evaluated. These are important implementation issues. The transi-
tion table also allows representation of a change in state of the database after rule execution, and thus represents a
very different semantics from our research.

In [CeWi90], a very powerful constraint language is defined and a procedure for deriving constraint maintain-
ing production rules is described. Their research focus is on the nature of constraints and the process of maintaining
constraints. We do not explore these issues in our paper. They guarantee that if the correct actions are specified,
corresponding to each violation of a constraint, then the rules are guaranteed to take the corrective actions, as
specified. In our research, too, we treat the update rules which retract information as rules that maintain an integrity
constraint. However, in our research, we use the declarative meaning given to the program comprising the initial
database and the update rules to determine which rules must execute and to determine the final database. This is an
advantage since we provide a declarative meaning for the fixpoint or forward-chaining semantics. An interesting
issue for future research would be to consider using our update rules and the fixpoint semantics to implement the
constraint language defined in [CeWi90].

8. Implementing Update Rules in a Relational DBMS

We briefly outline an implementation of the fixpoint semantics for update rule programs in an extended
DBMS environment. An important requirement is that the implementation should be straightforward, and require
minimal extensions to the relations or to the query processing strategy in a DBMS. We describe an incremental
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evaluation scheme where each rule is represented by a query which conditionally updates the relations in the data-
base.

8.1. Obtaining Queries from the Rules

We assume there is a relation corresponding to each predicate. The number and type of the attributes of the
relations correspond to the number and type of the terms in the predicate. The database relations correspond to
predicates which do not occur in the head of any update rules. The updatable relations correspond to predicates
which occur in the head of the update rules. These predicates may also occur in the body of the rules. To represent
tuples that are asserted and retracted, while guaranteeing that rule execution will terminate, each updatable relation
is extended with two additional attributes. These two attributes are named the a-flag and r-flag, respectively. The
update rules are represented by a set of queries that execute against both the database and the updatable relations.

When a tuple is inserted into an updatable relation through an explicit insert operation or when it is asserted
through the execution of an a-update rule, then the corresponding tuple is placed in the updatable relation. It has its
a-flag value set to 1, and its r-flag value set to 0, to indicate it has been asserted. When this tuple is retracted from
an updatable relation, by executing an r-update rule, the value of the r-flag is set to 1. When a tuple is deleted from
an updatable relation explicitly, then it will be actually deleted from this relation. Inserts and deletes from the data-
base relations are as usual, i.e., these relations are not extended with the flags.

Literals that correspond to database relations are interpreted in the usual manner against the tuples in the data-
base relations. Informally, a unifying tuple in a database relation satisfies a positive literal when the attribute values
of the unifying tuple satisfy the selection predicate that is specified in the vector of terms (constants and/or vari-
ables), corresponding to that literal. The exact relationship between the vector of terms in the literal and the attri-
butes of the unifying tuple is straightforward. A literal occurring negatively in the body of a rule, which
corresponds to a database relation, is satisfied when there are no unifying tuples in the corresponding relation that
satisfy the selection predicate.

However, for literals corresponding to updatable relations, there are additional requirements that must be met
for the literals to be satisfied. They are as follows:

(1) A literal occurring positively in the body of a rule will be satisfied by the existence of a unifying tuple of an
updatable relation which satisfies the selection predicate and has its a-flag value equal to 1 and its r-flag value
equal to 0. This indicates that the unifying tuple has either been explicitly inserted into the relation or it has
been asserted by an a-update rule, but it has not been retracted by an r-update rule.

(2) A literal occurring negatively in the body of a rule will be satisfied if all unifying tuples of an updatable rela-
tion that satisfy the selection predicate have both the a-flag value and the r-flag value set equal to 1.

(3) A literal occurring negatively in the body of a rule will also be satisfied when are no unifying tuples in the
corresponding updatable relations, or all the unifying tuples do not satisfy the selection predicate.

(4) A literal occurring negatively in the body of a rule will not be satisfied if there exists any unifying tuple which
matches the selection predicate and has its a-flag set equal to 1 but its r-flag set equal to 0. This tuple has
been explicitly inserted or asserted by an a-update rule but it has not been retracted by an r-update rule or
explicitly deleted.

The details of obtaining the corresponding queries from the update rules, based on the above criteria, is
straightforward. When these queries are executed, unifying tuples are retrieved from the relations corresponding to
the literals in the body of the rule, so that it can be determined if these unifying tuples satisfy the selection predicate
in the literals in the body of the rules. For those rules where the literals in the body are satisfied, the queries update
the updatable relation corresponding to the literal in the head of the rule.
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8.2. Maintaining an Update Rule System in a DBMS

The first step is to create a database and populate the relations to reflect the state of the initial database. This
is the Initialize step. Let EDBinit be a set of tuples representing the initial database. This step is as follows:

Initialize

For each database relation P
For each tuple P( td ) in EDBinit

{ INSERT INTO P
(P.attri := the corresponding constant in P( td ) ) }

For each updatable relation P
For each tuple P( td ) in EDBinit

{ INSERT INTO P
(P.a-flag := 1) AND (P.r-flag := 0) AND
(P.attri := the corresponding constant term in P( td ) ) }

Once a database has been created, there are three phases in the processing required to implement the seman-
tics of the update rule system. We expect that the system will cycle through these phases each time the database
relations are explicitly updated by a user, in order to maintain the updatable relations.

In the first phase, ExplicitUpdate, the contents of the relations must be updated to reflect the changes to both
database and updatable relations, as specified explicitly by the user. Suppose EDBins are the tuples that are inserted
and EDBdel are the tuples that are deleted. Clearly, as the database is updated over time, only a small portion of
EDBinit may actually change in each cycle. In the ExplicitUpdate phase, the processing is as follows:

ExplicitUpdate

For each database relation P
For each tuple P( td ) in EDBins

{ INSERT INTO P
(P.attri := the corresponding constant in P( td ) ) }

For each tuple P( td ) in P which is in EDBdel

{ DELETE FROM P
WHERE {for each attribute in P}
(P.attri = the corresponding constant in P( td ) ) }

For each updatable relation P
For each tuple P( td ) in EDBins

{ INSERT INTO P
(P.a-flag := 1) AND (P.r-flag := 0) AND
(P.attri := the corresponding constant in P( td ) ) }

For each tuple P( td ) in P which is in EDBdel

{ DELETE FROM P
WHERE

(P.a-flag = 1) AND (P.r-flag = 0) AND
{for each attribute in P}

(P.attri = the corresponding constant in P( td ) ) }

The second phase is the Evaluation. Let Q−URi, be the set of database queries derived from the set of a-
update rules and/or r-update rules in each partition URi of the update rule program UR. The database queries
corresponding to each partition of URi are executed, in turn, starting from UR1, until the queries in each partition,
Q−URi can no longer update the updatable relations, i.e., a fixpoint is reached.
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Evaluation

For each partition URi in increasing order of i
Non-deterministically select and execute a query from Q−URi

and update the updatable relations until a fixpoint is reached

The final phase is the Completion. All the tuples which have been retracted by the execution of an r-update
rule are deleted from the updatable relations. To explain, it is only during the processing of the Evaluation phase
that we need to explicitly maintain information on all the tuples that were retracted through the execution of r-
update rules so that the execution will terminate. Once the Evaluation completes, we no longer require this infor-
mation about the retracted tuples, and these tuples can be deleted. This will reduce the size of the updatable rela-
tions. It will also allow a tuple which was retracted through the execution of an r-update rule in the current Evalua-
tion phase to be re-asserted in the next ExplicitUpdate phase, without compromising the conditions for termination
of rule execution. The Completion is as follows:

Completion
For each updatable relation P

{ DELETE FROM P
WHERE
(P.a-flag = 1) AND (P.r-flag = 1) }

9. Summary and Future Research

In this paper, we have defined a semantics for update rules, i.e., rules whose execution can update the data-
base and can cause the further execution of rules. Our motivation is to define a class of programs which can be
easily identified by a DBMS designer and which will be useful in common DBMS applications such as to capture
triggering information, to maintain integrity constraints, or to make simple inferences. Our research focus is on sup-
porting these UR programs in an extended DBMS environment. The class of UR programs is syntactically
identified, based on the concept of stratification. We extend the strict definition of stratification and allow a more
flexible criterion for partitioning the rules in the UR program. This relaxation allows a certain degree of non-
determinism in rule execution, which can be very useful in maintaining integrity constraints in the database.

We define a semantics which is based upon a monotonic fixpoint operator TUR. The monotonicity of the
operator is achieved by explicitly recording the effects of inserts and deletes of the tuples in the database. The
semantics guarantee the execution of the rules will terminate and will produce a minimal database.

To obtain a declarative semantics for UR programs, we associate a normal logic program URddd with each UR
program. We use the stable model semantics for normal logic programs [GeLi88], which associates a set of stable
models with each normal logic program. The set of stable models are equivalent to the minimal databases that are
(non-deterministically) obtained in the fixpoint for the UR program. We prove that the fixpoint semantics for the
update rule program is sound and complete wrt the stable model semantics for the corresponding normal logic pro-
gram.

We describe implementing the semantics of the UR program in a DBMS environment. Relations that can be
updated by the rules or updatable relations are extended with two flags. An update rule can be represented by a
database query, which queries the updatable relations as well as database relations (which are not updated by the
rules). We describe an algorithm to compute a fixpoint in the DBMS environment and obtain the final updated data-
base. A prototype system that recognizes the legal update rule programs, translates the rules into database queries
and executes these queries against the database relations and the updatable relations is being built.

In future research, we propose extensions to the class of UR programs, so that they may be more useful in the
context of DBMS applications. This includes the support of explicit control information for rule execution. We
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also wish to allow multiple updates in the head of each rule. From the viewpoint of declarative semantics, we would
like to be able to extend the semantics so that the programs may be able to handle exceptions as used in AI pro-
grams, and causality [RaLo94]. We feel these extensions will be important to solve the problem of combining mul-
tiple knowledge bases.

We also propose to study the implementation issues in a DBMS more extensively. This includes the problem
of incremental computation of queries, and the concurrent execution and set-oriented execution of update rules. We
are also investigating magic transformations of the update rule programs to provide more efficient bottom-up com-
putation techniques [PaRa94].
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11. Appendix 1: The Translation with First-Order Predicates

In the case of the first-order predicates, we first specify some syntactic restrictions on the vectors of terms,
(variables and/or constants), associated with predicates in the cliques1. These restrictions ensure that the same (set
of) tuples are unifiable with each occurrence of the predicates, in all of the rules participating in a clique. We then
describe the translation to obtain a normal logic program.

11.1. Specifying the Cliques for First-Order Predicates

Suppose P1,..., Pp, are the predicates that occur in some maximal set associated with either an a-clique or an
r-clique. Further, suppose that the vector of terms associated with predicate Pk, in some a-update rule or r-update
rule rt, in this clique, is uk,tddd. The term uk,tddd must be unifiable with all other terms uk,sddd, for Pk, occurring in some other
rule rs, t ≠ s. In addition, the following conditions must hold:2

(1) Consider any two rules rt1 and rt2 in the clique, and the terms uk,t1ddd and uk,t2ddd, associated with Pk. Suppose the i-
th element of uk,t1ddd is a variable (or constant). Then, the i-th element of uk,t2ddd must also be a variable (or con-
stant).

(2) Consider any two rules rt1 and rt2 in the clique, and any terms uk1,t1dddd, uk1,t2dddd, uk2,t1dddd, uk2,t2dddd, associated with any two
predicates Pk1 and Pk2, in these rules, respectively. Suppose the i-th element of uk1,t1dddd and the j-th element of
uk1,t2dddd are common variables, i.e., they correspond to a join condition. Then the i-th element of uk2,t1dddd and the j-
th element of uk2,t2dddd must also correspond to a join condition.

(3) All the variables in the vector of terms associated with the predicates in the maximal set of the clique, P1,...,
Pp, must be mutually disjoint with the all the variables that occur in the vector of terms associated with the
other predicates, in the other rules of the clique.

11.2. The Translation for the First-Order Predicates

Step 1

Each r-update rule q relevant to P( vd ) transforms each a-update rule p which is relevant to P( ud ), or the fact P( ud ),
if it occurs in EDBinit. Two special unused predicates P* and P** are associated with each predicate P in the UR pro-
gram which is transformed in this step.

Let the a-update rule p be of the following form:

p: A1, ..., Aa, ¬B1, ..., ¬Bb → assert P( ud )

where a or b could be equal to 0, i.e., P( ud ) could be a fact.

Let each r-update rule q relevant to P be as follows:

q: P( vd ), C1, ..., Cc, ¬D1, ..., ¬Dd → retract P( vd )

Let ud and vd unify with the most general unifier θ. Then, the following rules are placed in URddd:

C1, ..., Cc, ¬D1, ..., ¬Dd → P* (vd)

¬P* (vd) θ , A1 θ , ..., Aa θ , ¬B1 θ , ..., ¬Bb θ → P( ud ) θ

1 we use vd to represent the vector of terms (v1dd, ..., vndd).
2 The conditions we present are very simple and may eliminate several cliques. We can define more complicated conditions that
accommodate more cliques, but do not present the details here.
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¬P**( ud ), A1, ..., Aa, ¬B1, ..., ¬Bb → P( ud )

( vd = ud) → P**( ud )

Step 2

Each fact in EDBinit which is not modified by any r-update rule, i.e., there are no r-update rules relevant to this fact
is placed unchanged in URddd.

Each a-update rule p relevant to P( ud ) which is as follows:

p: A1, ..., Aa, ¬B1, ..., ¬Bb → assert P( ud )

and which is not modified by any r-update rule will derive the following rule in URddd:

A1, ..., Aa, ¬B1, ..., ¬Bb → P( ud )


